The ocular surface system interacts with, reacts with, and adapts to the daily continuous insults, trauma, and stimuli caused by direct exposure to the atmosphere and environment. Several tissue and para-inflammatory mechanisms interact to guarantee such an ultimate function, hence maintaining its healthy homeostatic equilibrium. Evaporation seriously affects the homeostasis of the system, thereby becoming a critical trigger in the pathogenesis of the vicious cycle of dry eye disease (DED). Tear film lipid composition, distribution, spreading, and efficiency are crucial factors in controlling water evaporation, and are involved in the onset of the hyperosmolar and inflammatory cascades of DED. The structure of tear film lipids, and subsequently the tear film, have a considerable impact on tears' properties and main functions, leading to a peculiar clinical picture and specific management.

One Soul and Several Faces of Evaporative Dry Eye Disease

Aragona, Pasquale;
2024-01-01

Abstract

The ocular surface system interacts with, reacts with, and adapts to the daily continuous insults, trauma, and stimuli caused by direct exposure to the atmosphere and environment. Several tissue and para-inflammatory mechanisms interact to guarantee such an ultimate function, hence maintaining its healthy homeostatic equilibrium. Evaporation seriously affects the homeostasis of the system, thereby becoming a critical trigger in the pathogenesis of the vicious cycle of dry eye disease (DED). Tear film lipid composition, distribution, spreading, and efficiency are crucial factors in controlling water evaporation, and are involved in the onset of the hyperosmolar and inflammatory cascades of DED. The structure of tear film lipids, and subsequently the tear film, have a considerable impact on tears' properties and main functions, leading to a peculiar clinical picture and specific management.
2024
Inglese
Inglese
MDPI
13
5
1
16
16
Internazionale
Esperti anonimi
dry eye; evaporation; ocular surface; tears
info:eu-repo/semantics/article
Di Zazzo, Antonio; Barabino, Stefano; Fasciani, Romina; Aragona, Pasquale; Giannaccare, Giuseppe; Villani, Edoardo; Rolando, Maurizio
14.a Contributo in Rivista::14.a.1 Articolo su rivista
7
262
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3296408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact