This research aligns with sustainability goals, wherein hydrochar derived from the hydrothermal treatment of brewing industry waste was employed as a support for a ruthenium-based catalyst. Hydrochar-supported Ru metal (Ru-HC) was synthesized and applied in the reductive amination pathway within the H-cube, a flow reactor coupled with a hydrogen source. The reductive reaction between levulinic acid and n-butylamine was chosen as a model reaction. High conversion and high selectivity were obtained after optimization with temperature, flow rate, hydrogen pressure and solvents. At 40 bar of hydrogen pressure, 80 °C of temperature, with a flow of 0.1 mLmin-1, 99% conversion with selectivity of 98% towards the hydrogenated product was obtained. The catalytic ability of Ru-HC was investigated across a variety of substrate scopes. Several biomass-derived molecules such as furfural, 5-hydroxymethylfurfural, furfurylamine etc. were employed in the reductive amination process to yield diverse valuable N-containing products. The possible mechanism was further proved with the formation of an intermediate and a recyclability study proved the robust nature of Ru-HC. Overall, the established pathway for reductive amination with Ru-HC as a heterogeneous catalyst provides a sustainable protocol for the synthesis of N-containing molecules, which is highly valuable for our society.

Brewing sustainability: Continuous flow Ru-supported hydrochar from bagasse beer waste for renewable N-containing chemicals via reductive amination of biomass-derived platform molecules

Bressi V.
Primo
;
Minio F.;Espro C.;
2024-01-01

Abstract

This research aligns with sustainability goals, wherein hydrochar derived from the hydrothermal treatment of brewing industry waste was employed as a support for a ruthenium-based catalyst. Hydrochar-supported Ru metal (Ru-HC) was synthesized and applied in the reductive amination pathway within the H-cube, a flow reactor coupled with a hydrogen source. The reductive reaction between levulinic acid and n-butylamine was chosen as a model reaction. High conversion and high selectivity were obtained after optimization with temperature, flow rate, hydrogen pressure and solvents. At 40 bar of hydrogen pressure, 80 °C of temperature, with a flow of 0.1 mLmin-1, 99% conversion with selectivity of 98% towards the hydrogenated product was obtained. The catalytic ability of Ru-HC was investigated across a variety of substrate scopes. Several biomass-derived molecules such as furfural, 5-hydroxymethylfurfural, furfurylamine etc. were employed in the reductive amination process to yield diverse valuable N-containing products. The possible mechanism was further proved with the formation of an intermediate and a recyclability study proved the robust nature of Ru-HC. Overall, the established pathway for reductive amination with Ru-HC as a heterogeneous catalyst provides a sustainable protocol for the synthesis of N-containing molecules, which is highly valuable for our society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3296434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact