Background: The Deyo adaptation of the Charlson comorbidity index (DaCCI), which relies on 17 comorbid condition groupings, represents one of the most frequently used baseline comorbidity assessment tools in retrospective database studies. However, this index is not specific for patients with bladder cancer (BCa) treated with radical cystectomy (RC). The goal of this study was to develop a short-form of the original DaCCI (DaCCI-SF) that may specifically predict 90-day mortality after RC, with equal or better accuracy. Patients and Methods: Between 2000 and 2009, we identified 7,076 patients in the SEER-Medicare database with stage T1 through T4 nonmetastatic BCa treated with RC. We randomly divided the population into development (n= 6,076) and validation (n= 1,000) cohorts. Within the development cohort, logistic regression models tested the ability to predict 90-day mortality with various iterations of the DaCCI-SF, wherein < 17 original comorbid condition groupings were included after adjusting for age, sex, race, T stage, and N stage. We relied on the Akaike information criterion to identify the most parsimonious and informative set of comorbid condition groupings. Accuracy of the DaCCI and the DaCCI-SF was tested in the external validation cohort. Results: Within the development cohort, the most parsimonious and informative model resulted in the inclusion of 3 of the 17 (17.6%) original comorbid condition groupings: congestive heart failure, cerebrovascular disease, and chronic pulmonary disease. Within the validation cohort, the accuracy was 68.4% for the DaCCI versus 69.7% for the DaCCI-SF. Higher accuracy of the DaCCI-SF was confirmed in subgroup analyses performed according to age (<= 75 vs >75 years), stage (organ-confined vs non-organ-confined), type of diversion (ilealconduit vs non-ileal-conduit), and treatment period. Conclusions: DaCCI-SF relies on 17.6% of the original comorbid condition groupings and provides higher accuracy for predicting 90-day mortality after RC compared with the original DaCCI, especially in most contemporary patients.
Short-Form Charlson Comorbidity Index for Assessment of Perioperative Mortality After Radical Cystectomy
Di Trapani, Ettore;
2017-01-01
Abstract
Background: The Deyo adaptation of the Charlson comorbidity index (DaCCI), which relies on 17 comorbid condition groupings, represents one of the most frequently used baseline comorbidity assessment tools in retrospective database studies. However, this index is not specific for patients with bladder cancer (BCa) treated with radical cystectomy (RC). The goal of this study was to develop a short-form of the original DaCCI (DaCCI-SF) that may specifically predict 90-day mortality after RC, with equal or better accuracy. Patients and Methods: Between 2000 and 2009, we identified 7,076 patients in the SEER-Medicare database with stage T1 through T4 nonmetastatic BCa treated with RC. We randomly divided the population into development (n= 6,076) and validation (n= 1,000) cohorts. Within the development cohort, logistic regression models tested the ability to predict 90-day mortality with various iterations of the DaCCI-SF, wherein < 17 original comorbid condition groupings were included after adjusting for age, sex, race, T stage, and N stage. We relied on the Akaike information criterion to identify the most parsimonious and informative set of comorbid condition groupings. Accuracy of the DaCCI and the DaCCI-SF was tested in the external validation cohort. Results: Within the development cohort, the most parsimonious and informative model resulted in the inclusion of 3 of the 17 (17.6%) original comorbid condition groupings: congestive heart failure, cerebrovascular disease, and chronic pulmonary disease. Within the validation cohort, the accuracy was 68.4% for the DaCCI versus 69.7% for the DaCCI-SF. Higher accuracy of the DaCCI-SF was confirmed in subgroup analyses performed according to age (<= 75 vs >75 years), stage (organ-confined vs non-organ-confined), type of diversion (ilealconduit vs non-ileal-conduit), and treatment period. Conclusions: DaCCI-SF relies on 17.6% of the original comorbid condition groupings and provides higher accuracy for predicting 90-day mortality after RC compared with the original DaCCI, especially in most contemporary patients.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.