Dissimilar welds between ferritic and austenitic stainless steels are widely used in industrial applications. Taking into account the issues inherent to arc welding, such as the high heat input and the need to carry out multiple passes in the case of thick plates, a procedure with two simultaneous laser beams (working in a single pass) and consumable inserts as filler metal has been considered. Particular attention was paid to the choice of the filler metal (composition and amount), as well as welding parameters, which are crucial to obtain the right dilution necessary for a correct chemical composition in the weld zone. The first experimental investigations confirmed the achievement of a good weldability of the dissimilar pair ASTM A387 ferritic/AISI 304L austenitic steel, having ascertained that the microstructure of the weld zone is austenitic with a little amount of residual primary ferrite, which is the best condition to minimize the risk of hot cracking.

Dissimilar Welding of Thick Ferritic/Austenitic Steels Plates Using Two Simultaneous Laser Beams in a Single Pass

Sili, Andrea
Ultimo
2024-01-01

Abstract

Dissimilar welds between ferritic and austenitic stainless steels are widely used in industrial applications. Taking into account the issues inherent to arc welding, such as the high heat input and the need to carry out multiple passes in the case of thick plates, a procedure with two simultaneous laser beams (working in a single pass) and consumable inserts as filler metal has been considered. Particular attention was paid to the choice of the filler metal (composition and amount), as well as welding parameters, which are crucial to obtain the right dilution necessary for a correct chemical composition in the weld zone. The first experimental investigations confirmed the achievement of a good weldability of the dissimilar pair ASTM A387 ferritic/AISI 304L austenitic steel, having ascertained that the microstructure of the weld zone is austenitic with a little amount of residual primary ferrite, which is the best condition to minimize the risk of hot cracking.
2024
File in questo prodotto:
File Dimensione Formato  
JMMP - Communication - 2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3302030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact