In this article, a field-plated and recessed gate III-Nitride Nano-HEMT developed on β-Ga2O3 substrate is proposed and investigated for various performance characteristics over different temperatures. The 2DEG (Two Dimensional Electron Gas) dependence on temperature is critical for commercial utilization of GaN-based HEMTs (high electron mobility transistors). Here, the temperature influence on 2DEG for proposed HEMT over the range of 300–400 K has been investigated. The results demonstrate that the 2DEG density of proposed HEMT reduces as temperature increases. It has been observed that phonon scattering results in a sharp decline in the mobility of 2DEG as temperature increases, which causes the electric field to decrease. It also exhibited that the cut-off frequency decreased over the temperature changes from 300 to 400 K due to diminution in electron mobility. This research aims to contribute an extensive overview of proposed III-Nitride Nano-HEMT designed on a lattice-matched substrate of β-Ga2O3 to foster future research on the latest developments in this field.

Effect of temperature dependence of 2DEG on device characteristics of field-plated recessed-gate III-nitride/β-Ga2O3 nano-HEMT

Boukortt N. E. I.;Crupi G.
Ultimo
2024-01-01

Abstract

In this article, a field-plated and recessed gate III-Nitride Nano-HEMT developed on β-Ga2O3 substrate is proposed and investigated for various performance characteristics over different temperatures. The 2DEG (Two Dimensional Electron Gas) dependence on temperature is critical for commercial utilization of GaN-based HEMTs (high electron mobility transistors). Here, the temperature influence on 2DEG for proposed HEMT over the range of 300–400 K has been investigated. The results demonstrate that the 2DEG density of proposed HEMT reduces as temperature increases. It has been observed that phonon scattering results in a sharp decline in the mobility of 2DEG as temperature increases, which causes the electric field to decrease. It also exhibited that the cut-off frequency decreased over the temperature changes from 300 to 400 K due to diminution in electron mobility. This research aims to contribute an extensive overview of proposed III-Nitride Nano-HEMT designed on a lattice-matched substrate of β-Ga2O3 to foster future research on the latest developments in this field.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3306175
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact