Purpose: Probe-based confocal laser endomicroscopy (pCLE) enables performing an optical biopsy via a probe. pCLE probes consist of multiple optical fibres arranged in a bundle, which taken together generate signals in an irregularly sampled pattern. Current pCLE reconstruction is based on interpolating irregular signals onto an over-sampled Cartesian grid, using a naive linear interpolation. It was shown that convolutional neural networks (CNNs) could improve pCLE image quality. Yet classical CNNs may be suboptimal in regard to irregular data. Methods: We compare pCLE reconstruction and super-resolution (SR) methods taking irregularly sampled or reconstructed pCLE images as input. We also propose to embed a Nadaraya–Watson (NW) kernel regression into the CNN framework as a novel trainable CNN layer. We design deep learning architectures allowing for reconstructing high-quality pCLE images directly from the irregularly sampled input data. We created synthetic sparse pCLE images to evaluate our methodology. Results: The results were validated through an image quality assessment based on a combination of the following metrics: peak signal-to-noise ratio and the structural similarity index. Our analysis indicates that both dense and sparse CNNs outperform the reconstruction method currently used in the clinic. Conclusion: The main contributions of our study are a comparison of sparse and dense approach in pCLE image reconstruction. We also implement trainable generalised NW kernel regression as a novel sparse approach. We also generated synthetic data for training pCLE SR.

Learning from irregularly sampled data for endomicroscopy super-resolution: a comparative study of sparse and dense approaches

Ravi' D.;
2020-01-01

Abstract

Purpose: Probe-based confocal laser endomicroscopy (pCLE) enables performing an optical biopsy via a probe. pCLE probes consist of multiple optical fibres arranged in a bundle, which taken together generate signals in an irregularly sampled pattern. Current pCLE reconstruction is based on interpolating irregular signals onto an over-sampled Cartesian grid, using a naive linear interpolation. It was shown that convolutional neural networks (CNNs) could improve pCLE image quality. Yet classical CNNs may be suboptimal in regard to irregular data. Methods: We compare pCLE reconstruction and super-resolution (SR) methods taking irregularly sampled or reconstructed pCLE images as input. We also propose to embed a Nadaraya–Watson (NW) kernel regression into the CNN framework as a novel trainable CNN layer. We design deep learning architectures allowing for reconstructing high-quality pCLE images directly from the irregularly sampled input data. We created synthetic sparse pCLE images to evaluate our methodology. Results: The results were validated through an image quality assessment based on a combination of the following metrics: peak signal-to-noise ratio and the structural similarity index. Our analysis indicates that both dense and sparse CNNs outperform the reconstruction method currently used in the clinic. Conclusion: The main contributions of our study are a comparison of sparse and dense approach in pCLE image reconstruction. We also implement trainable generalised NW kernel regression as a novel sparse approach. We also generated synthetic data for training pCLE SR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3313049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact