We study by molecular dynamics simulations the absorption of polypropylene (PP) chains within a dipalmitoylphosphatidylcholine (DPPC) lipid membrane in aqueous solvent. DPPC represents the most abundant phospholipid in biological membranes, while PP is one of the most common synthetic polymers diffused in the anthropic environment. By following in detail the absorption process, and the corresponding structural modification undergone by the membrane, we show how the initial configuration and the PP molecular weight determine the overall behavior of the system. Specifically, if PP chains initially lie on the DPPC surface, they are fully absorbed; likewise, polymers initially included within the membrane cannot escape from. On the other hand, if polymers are placed sufficiently apart from the membrane, they have time to join together and coalesce into a few nanoparticles. At contact, such nanoparticles may completely dissolve (for low molecular weight) and then be absorbed. For high molecular weight, not all of them dissolve, and therefore the system attains a condition in which some of the chains are absorbed, while others form a residual nanoparticle staying outside (but in contact with) the membrane. Such a state─albeit energetically unfavorable with respect to a condition in which all PP chains are absorbed─remains stable, at the least over a substantial simulation time, extending in our study up to 1.6 μs. The tendency for polymers to spontaneously form aggregates, which then prefer to stay in contact with the membrane, is further corroborated by calculation of the DPPC-nanoparticle potential of mean force.

Absorption of Polypropylene in Dipalmitoylphosphatidylcholine Membranes: The Role of Molecular Weight and Initial Configuration of Polymer Chains

Costa D.
Secondo
;
Munao' G.
Ultimo
2024-01-01

Abstract

We study by molecular dynamics simulations the absorption of polypropylene (PP) chains within a dipalmitoylphosphatidylcholine (DPPC) lipid membrane in aqueous solvent. DPPC represents the most abundant phospholipid in biological membranes, while PP is one of the most common synthetic polymers diffused in the anthropic environment. By following in detail the absorption process, and the corresponding structural modification undergone by the membrane, we show how the initial configuration and the PP molecular weight determine the overall behavior of the system. Specifically, if PP chains initially lie on the DPPC surface, they are fully absorbed; likewise, polymers initially included within the membrane cannot escape from. On the other hand, if polymers are placed sufficiently apart from the membrane, they have time to join together and coalesce into a few nanoparticles. At contact, such nanoparticles may completely dissolve (for low molecular weight) and then be absorbed. For high molecular weight, not all of them dissolve, and therefore the system attains a condition in which some of the chains are absorbed, while others form a residual nanoparticle staying outside (but in contact with) the membrane. Such a state─albeit energetically unfavorable with respect to a condition in which all PP chains are absorbed─remains stable, at the least over a substantial simulation time, extending in our study up to 1.6 μs. The tendency for polymers to spontaneously form aggregates, which then prefer to stay in contact with the membrane, is further corroborated by calculation of the DPPC-nanoparticle potential of mean force.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3316093
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact