Worldwide, anthropogenic activities are causing the natural environment and aquaculture systems to become heavily contaminated with heavy metals, which can lead to consumer’s health problems. In the current study, wild and farmed fish (n = 30) and water samples (n = 6) have been collected from the Chashma barrage and fish farm to assess the heavy metals concentration, i.e., Cu, Cd, Pb, Zn and Cr, in the water and some important organs (gills, liver, muscle, brain and bones) of wild and farmed fish (Labeo rohita) using Graphite furnace Atomic absorption spectrometry. Bioaccumulation factor and human health risk assessment were calculated to measure the health status of both fish and humans. Results show that in wild and farm fish’s gills, muscles and bones, the trend of the heavy metals was Zn > Pb > Cu > Cd > Cr. On the other hand, the brain and liver show Zn > Cu > Pb > Cd > Cr trend. Comparatively, the heavy metals concentration was mostly higher (P < 0.05) in wild fish. Further; in both fish habitats (water) the heavy metals (Cd and Pb) concentration was higher than the WHO standard level, while in the body, Cd was higher (P < 0.05) in all studied organs except the muscle, Cr was only lower (P > 0.05) in muscle and brain. Pb was higher (P < 0.05) in all studied organs of both fish. Bioaccumulation of heavy metals was mostly higher (P < 0.05) in wild fish than in farmed. EDI and THQ were higher in wild fish, but the HI value was lower than 1 for both fish. Moreover, the PCA analysis suggests a positive correlation between heavy metals concentration in fish organs and the water of both fish (wild and farmed). Results indicated that farmed fish showed less potential risk to humans than wild fish.

Assessment and Bioaccumulation of Heavy Metals in Water, Fish (wild and Farmed) and Associated Human Health Risk

Fazio F.
;
Cravana C.;Filiciotto F.
Penultimo
;
2024-01-01

Abstract

Worldwide, anthropogenic activities are causing the natural environment and aquaculture systems to become heavily contaminated with heavy metals, which can lead to consumer’s health problems. In the current study, wild and farmed fish (n = 30) and water samples (n = 6) have been collected from the Chashma barrage and fish farm to assess the heavy metals concentration, i.e., Cu, Cd, Pb, Zn and Cr, in the water and some important organs (gills, liver, muscle, brain and bones) of wild and farmed fish (Labeo rohita) using Graphite furnace Atomic absorption spectrometry. Bioaccumulation factor and human health risk assessment were calculated to measure the health status of both fish and humans. Results show that in wild and farm fish’s gills, muscles and bones, the trend of the heavy metals was Zn > Pb > Cu > Cd > Cr. On the other hand, the brain and liver show Zn > Cu > Pb > Cd > Cr trend. Comparatively, the heavy metals concentration was mostly higher (P < 0.05) in wild fish. Further; in both fish habitats (water) the heavy metals (Cd and Pb) concentration was higher than the WHO standard level, while in the body, Cd was higher (P < 0.05) in all studied organs except the muscle, Cr was only lower (P > 0.05) in muscle and brain. Pb was higher (P < 0.05) in all studied organs of both fish. Bioaccumulation of heavy metals was mostly higher (P < 0.05) in wild fish than in farmed. EDI and THQ were higher in wild fish, but the HI value was lower than 1 for both fish. Moreover, the PCA analysis suggests a positive correlation between heavy metals concentration in fish organs and the water of both fish (wild and farmed). Results indicated that farmed fish showed less potential risk to humans than wild fish.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3316569
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 30
social impact