Let S = K[x1,..,xn] be the standard graded polynomial ring, with K a field, and let t = (t1,..,td-1) ∈ ℤd-1 ≥, d ≥ 2, be a (d-1)-Tuple whose entries are non-negative integers. To a t-spread ideal I in S, we associate a unique ft-vector and we prove that if I is t-spread strongly stable, then there exists a unique t-spread lex ideal which shares the same ft-vector of I via the combinatorics of the t-spread shadows of special sets of monomials of S. Moreover, we characterize the possible ft-vectors of t-vector spread strongly stable ideals generalizing the well-known theorems of Macaulay and Kruskal-Katona. Finally, we prove that among all t-spread strongly stable ideals with the same ft-vector, the t-spread lex ideals have the largest Betti numbers.

Macaulay's theorem for vector-spread algebras

Crupi M.
Primo
;
Lax E.
2024-01-01

Abstract

Let S = K[x1,..,xn] be the standard graded polynomial ring, with K a field, and let t = (t1,..,td-1) ∈ ℤd-1 ≥, d ≥ 2, be a (d-1)-Tuple whose entries are non-negative integers. To a t-spread ideal I in S, we associate a unique ft-vector and we prove that if I is t-spread strongly stable, then there exists a unique t-spread lex ideal which shares the same ft-vector of I via the combinatorics of the t-spread shadows of special sets of monomials of S. Moreover, we characterize the possible ft-vectors of t-vector spread strongly stable ideals generalizing the well-known theorems of Macaulay and Kruskal-Katona. Finally, we prove that among all t-spread strongly stable ideals with the same ft-vector, the t-spread lex ideals have the largest Betti numbers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3317370
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact