This study presents a breakthrough in the detection of polycyclic aromatic hydrocarbons (PAHs), particularly pyrene, recognized as persistent organic pollutants (POPs) with significant bioaccumulation and cancer risks. An optical sensor based on silicon nanowires (Si NWs) is presented, leveraging an approach that combines silane treatment and functionalization with 6-monodeoxy-6-monoamino-β-cyclodextrin. This method innovatively utilizes the quantum-confinement properties of Si NWs and noncovalent interactions for molecular recognition, enabling highly sensitive pyrene detection in water without prior treatment. The anchoring of β-CD quenches the optical emission of quantum-confined carriers in Si NWs, whereas the inclusion of pyrene in the receptor cavity restores the luminescence of the system, producing a disruption of luminescence quenching induced by the analyte. The sensor achieves a limit of detection (LoD) of 2 × 10-4 ppb and a limit of quantification (LoQ) of 0.01 ppb, covering a dynamic range over 6 orders of magnitude. This advancement integrates nanophotonics and supramolecular chemistry, marking a significant leap in environmental monitoring methodologies.

Ultrasensitive Detection and Wide Dynamic Range Pyrene Quantification Based on Luminescence Restoration of β-Cyclodextrin-Functionalized Silicon Nanowires

Leonardi A. A.
Co-primo
;
Puntoriero F.;
2024-01-01

Abstract

This study presents a breakthrough in the detection of polycyclic aromatic hydrocarbons (PAHs), particularly pyrene, recognized as persistent organic pollutants (POPs) with significant bioaccumulation and cancer risks. An optical sensor based on silicon nanowires (Si NWs) is presented, leveraging an approach that combines silane treatment and functionalization with 6-monodeoxy-6-monoamino-β-cyclodextrin. This method innovatively utilizes the quantum-confinement properties of Si NWs and noncovalent interactions for molecular recognition, enabling highly sensitive pyrene detection in water without prior treatment. The anchoring of β-CD quenches the optical emission of quantum-confined carriers in Si NWs, whereas the inclusion of pyrene in the receptor cavity restores the luminescence of the system, producing a disruption of luminescence quenching induced by the analyte. The sensor achieves a limit of detection (LoD) of 2 × 10-4 ppb and a limit of quantification (LoQ) of 0.01 ppb, covering a dynamic range over 6 orders of magnitude. This advancement integrates nanophotonics and supramolecular chemistry, marking a significant leap in environmental monitoring methodologies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3319622
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact