In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials. The systems under investigation are characterized by UV/vis absorption spectroscopy, dynamic light scattering (DLS), zeta potential (Z-Pot), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The stability of the AgNPs@GO composite suspension is tested as a function of GO concentration (0–67 μg/mL) while maintaining a constant Ag content (14.4 μg/mL), exhibiting excellent stability over time up to an Ag-to-GO mass ratio of 0.58.

Easy One-Pot Decoration of Graphene Oxide Nanosheets by Green Silver Nanoparticles

Ileana Ielo
Primo
;
Federica De Gaetano
Secondo
;
Elpida Piperopoulos;Giovanna De Luca
Penultimo
;
Sabrina Conoci
Ultimo
2025-01-01

Abstract

In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials. The systems under investigation are characterized by UV/vis absorption spectroscopy, dynamic light scattering (DLS), zeta potential (Z-Pot), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The stability of the AgNPs@GO composite suspension is tested as a function of GO concentration (0–67 μg/mL) while maintaining a constant Ag content (14.4 μg/mL), exhibiting excellent stability over time up to an Ag-to-GO mass ratio of 0.58.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3323110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact