Here we report on the fabrication of a new low-cost transparent cathode based on platinum nanoparticles prepared by a bottom-up synthetic approach. Scanning Electron Microscope (SEM) images showed the platinum nanoparticles homogeneously distributed on a fluorine doped tin oxide conductive glass surface. We demonstrated that, with such a type of cathode, the solar energy conversion efficiency is the same as that obtained with a platinum sputtered counter-electrode, and is more than 50% greater than that obtained with a standard electrode, i.e. one prepared by chlorine platinum acid thermal decomposition, in similar working conditions. Using a special back-reflecting layer of silver, we improved upon the performance of a counter-electrode based on platinum sputtering, achieving an overall solar conversion efficiency of 4.75% at 100 mW cm-2 (AM 1.5) of simulated sunlight. © The Royal Society of Chemistry 2011.

A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells

Sinopoli A.;
2011-01-01

Abstract

Here we report on the fabrication of a new low-cost transparent cathode based on platinum nanoparticles prepared by a bottom-up synthetic approach. Scanning Electron Microscope (SEM) images showed the platinum nanoparticles homogeneously distributed on a fluorine doped tin oxide conductive glass surface. We demonstrated that, with such a type of cathode, the solar energy conversion efficiency is the same as that obtained with a platinum sputtered counter-electrode, and is more than 50% greater than that obtained with a standard electrode, i.e. one prepared by chlorine platinum acid thermal decomposition, in similar working conditions. Using a special back-reflecting layer of silver, we improved upon the performance of a counter-electrode based on platinum sputtering, achieving an overall solar conversion efficiency of 4.75% at 100 mW cm-2 (AM 1.5) of simulated sunlight. © The Royal Society of Chemistry 2011.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3324151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 205
  • ???jsp.display-item.citation.isi??? 192
social impact