Anion exchange membranes (AEMs) are becoming increasingly common in electrochemical energy conversion and storage systems around the world (EES). Proton-/cation-exchange membranes (which conduct positive charged ions such as H+ or Na+) have historically been used in many devices such as fuel cells, electrolysers, and redox flow batteries. High capital costs and the use of noble metal catalysts are two of the current major disadvantages of polymer electrolyte membrane (PEM)-based systems. AEMs may be able to overcome the limitations of conventional PEMs. As a result, polymers with anion exchange properties have recently attracted a lot of attention due to their significant benefits in terms of transitioning from a highly acidic to an alkaline environment, high kinetics for oxygen reduction and fuel oxidation in an alkaline environment, and lower cost due to the use of non-precious metals. The aim of this research was to learn more about the development of a new AEM based on poly tetraarylphosphonium ionomers (pTAP), which has high ionic conductivity, alkaline stability, thermal stability, and good mechanical properties, making it a more cost-effective and stable alternative to conventional and commercial AEMs. A simple solution casting method was used to build novel anion exchange composite membranes with controlled thicknesses using the synthesized pTAP with polysulfone (PS). To ensure their suitability for use as an electrolyte in alkaline electrochemical systems, the composite membranes were characterized using FTIR, XRD, water uptake, ionic conductivity, and alkaline stability. At 40 °C, the PS/pTAP 40/60 percent membrane had a maximum ionic conductivity of 4.2 mS/cm. The thermal and mechanical stability of the composite membranes were also examined, with no substantial weight loss observed up to 150 °C. These findings pave the way for these membranes to be used in a wide variety of electrochemical applications.

Investigating the suitability of poly tetraarylphosphonium based anion exchange membranes for electrochemical applications

Sinopoli A.
Secondo
;
2021-01-01

Abstract

Anion exchange membranes (AEMs) are becoming increasingly common in electrochemical energy conversion and storage systems around the world (EES). Proton-/cation-exchange membranes (which conduct positive charged ions such as H+ or Na+) have historically been used in many devices such as fuel cells, electrolysers, and redox flow batteries. High capital costs and the use of noble metal catalysts are two of the current major disadvantages of polymer electrolyte membrane (PEM)-based systems. AEMs may be able to overcome the limitations of conventional PEMs. As a result, polymers with anion exchange properties have recently attracted a lot of attention due to their significant benefits in terms of transitioning from a highly acidic to an alkaline environment, high kinetics for oxygen reduction and fuel oxidation in an alkaline environment, and lower cost due to the use of non-precious metals. The aim of this research was to learn more about the development of a new AEM based on poly tetraarylphosphonium ionomers (pTAP), which has high ionic conductivity, alkaline stability, thermal stability, and good mechanical properties, making it a more cost-effective and stable alternative to conventional and commercial AEMs. A simple solution casting method was used to build novel anion exchange composite membranes with controlled thicknesses using the synthesized pTAP with polysulfone (PS). To ensure their suitability for use as an electrolyte in alkaline electrochemical systems, the composite membranes were characterized using FTIR, XRD, water uptake, ionic conductivity, and alkaline stability. At 40 °C, the PS/pTAP 40/60 percent membrane had a maximum ionic conductivity of 4.2 mS/cm. The thermal and mechanical stability of the composite membranes were also examined, with no substantial weight loss observed up to 150 °C. These findings pave the way for these membranes to be used in a wide variety of electrochemical applications.
2021
Inglese
Inglese
Nature Research
11
1
13841
13841
1
Internazionale
Esperti anonimi
info:eu-repo/semantics/article
Arunachalam, M.; Sinopoli, A.; Aidoudi, F.; Creager, S. E.; Smith, R.; Merzougui, B.; Aissa, B.
14.a Contributo in Rivista::14.a.1 Articolo su rivista
7
262
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3324444
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact