This study investigates the effects of polyethylene glycol (PEG) on Mytilus galloprovincialis, a key sentinel species in marine environments. As PEGs are widely used in personal care products and pharmaceuticals, their increasing presence in marine ecosystems poses a potential threat to non-target organisms. A total of 150 mussels were exposed to different concentrations of PEG (0.1 mg/L and 10 mg/L) over 14 days. The impact of PEG exposure was assessed through cell viability assays, regulatory volume decrease (RVD) tests, and histological analysis, respectively, on hemolymph and digestive gland (DG) cells, on gills, DG, and gonads. Significant reductions in cell viability were observed in hemocytes and DG cells, particularly at higher PEG concentrations. Histological analysis revealed pronounced tissue damage, including hemocyte infiltration, lipofuscin aggregation, and epithelial disorganization in the gills, hepatopancreas, and gonads, indicating PEG-induced cytotoxicity. The study also observed impaired RVD mechanisms in DG cells, highlighting changes in cell volume regulation. These findings demonstrate that PEG can induce significant physiological and morphological alterations in marine mussels, raising concerns about its impact on aquatic ecosystems.

A Comparative Analysis of Physiological and Morphological Alteration in Mytilus galloprovincialis After Exposure to Polyethylene Glycol (PEG)

Impellitteri, Federica;Multisanti, Cristiana Roberta;Di Paola, Davide;Inferrera, Francesca;Cuzzocrea, Salvatore;Piccione, Giuseppe;Faggio, Caterina;Cordaro, Marika
2025-01-01

Abstract

This study investigates the effects of polyethylene glycol (PEG) on Mytilus galloprovincialis, a key sentinel species in marine environments. As PEGs are widely used in personal care products and pharmaceuticals, their increasing presence in marine ecosystems poses a potential threat to non-target organisms. A total of 150 mussels were exposed to different concentrations of PEG (0.1 mg/L and 10 mg/L) over 14 days. The impact of PEG exposure was assessed through cell viability assays, regulatory volume decrease (RVD) tests, and histological analysis, respectively, on hemolymph and digestive gland (DG) cells, on gills, DG, and gonads. Significant reductions in cell viability were observed in hemocytes and DG cells, particularly at higher PEG concentrations. Histological analysis revealed pronounced tissue damage, including hemocyte infiltration, lipofuscin aggregation, and epithelial disorganization in the gills, hepatopancreas, and gonads, indicating PEG-induced cytotoxicity. The study also observed impaired RVD mechanisms in DG cells, highlighting changes in cell volume regulation. These findings demonstrate that PEG can induce significant physiological and morphological alterations in marine mussels, raising concerns about its impact on aquatic ecosystems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3332590
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact