Let N,Z, and Q be the sets of natural, integers, and rational numbers, respectively. Our objective, involving a predetermined positive integer a, is to study a characterization of Diophantine equations of the form a + y2 = z2. Building on this result, we aim to obtain a characterization for Pythagorean n-tuples. Furthermore, we seek to prove the existence of a commutative infinite monoid in the set of Diophantine equations a + y2 = z2 with elements in N. Additionally, we intend to establish a commutative infinite monoid with elements in N or Z on the set of Pythagorean quadruples. Moreover, in the set of Pythagorean quadruples, we aim to find a commutative infinite group with elements in Q or Z. To achieve these results, we prove the existence of some suitable binary operations.

Characterization of Diophantine Equations a + y2 = z2, Pythagorean n‐Tuples, and Algebraic Structures

Amato, Roberto
2025-01-01

Abstract

Let N,Z, and Q be the sets of natural, integers, and rational numbers, respectively. Our objective, involving a predetermined positive integer a, is to study a characterization of Diophantine equations of the form a + y2 = z2. Building on this result, we aim to obtain a characterization for Pythagorean n-tuples. Furthermore, we seek to prove the existence of a commutative infinite monoid in the set of Diophantine equations a + y2 = z2 with elements in N. Additionally, we intend to establish a commutative infinite monoid with elements in N or Z on the set of Pythagorean quadruples. Moreover, in the set of Pythagorean quadruples, we aim to find a commutative infinite group with elements in Q or Z. To achieve these results, we prove the existence of some suitable binary operations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3333049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact