In this article, we classify all symmetric generalized numerical semigroups in Nd of embedding dimension 2d + 1. Consequently, we show that in the case d > 1, the property of being symmetric is equivalent to have a unique maximal gap with respect to natural partial order in Nd . Moreover, we deduce that when d > 1, there does not exist any generalized numerical semigroup of embedding dimension 2d + 1, which is almost symmetric but not symmetric.

Symmetric generalized numerical semigroups in N^d with embedding dimension 2d+1

Cisto, Carmelo
2025-01-01

Abstract

In this article, we classify all symmetric generalized numerical semigroups in Nd of embedding dimension 2d + 1. Consequently, we show that in the case d > 1, the property of being symmetric is equivalent to have a unique maximal gap with respect to natural partial order in Nd . Moreover, we deduce that when d > 1, there does not exist any generalized numerical semigroup of embedding dimension 2d + 1, which is almost symmetric but not symmetric.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3334394
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact