Let G be a finite simple graph, and let I(G) be its edge ideal. In this article, we investigate the squarefree powers of I(G) by means of Betti splittings. When G is a forest, it is shown that the normalized depth function of I(G) is non increasing. Moreover, we compute explicitly the regularity function of squarefree powers of I(G) with G a forest, confirming a conjecture of Erey and Hibi.

Matchings, squarefree powers, and Betti splittings

Crupi, Marilena
;
Lax, Ernesto
2025-01-01

Abstract

Let G be a finite simple graph, and let I(G) be its edge ideal. In this article, we investigate the squarefree powers of I(G) by means of Betti splittings. When G is a forest, it is shown that the normalized depth function of I(G) is non increasing. Moreover, we compute explicitly the regularity function of squarefree powers of I(G) with G a forest, confirming a conjecture of Erey and Hibi.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3336191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact