Nowadays, nitrate ions and azo dyes are a significant source of water pollution due to their high toxicity, persistence, and potential to be carcinogenic. Both contaminants are the result of anthropogenic sources, such as sewage or industrial wastewater discharge; the first one results also as a consequence of the intensive use of fertilizers. In this work we report the use of a new quaternized pentablock copolymer (PTBr) for the removal of nitrate ions and methyl orange (MO) dye from water by adsorption processes. Morphological, chemical, and thermal properties of the pentablock copolymer were investigated, respectively, by scanning electron microscopy (SEM), Attenuated Total Reflectance Infrared Spectroscopy (ATR-FTIR) (FT-IR), and X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) analyses. Anionic removal ability and adsorption rate in water solutions containing either a single contaminant species or a mix of the two contaminants were studied by UV–VIS absorbance spectroscopy as a function of time and initial concentration. The presence of imidazole groups confers on PTBr a positive charge and a hydrophilic character that are responsible for an effective removal of anions from water. PTBr film reports an adsorption efficiency of 10.15 mg/g for nitrate removal and this value is in line with others reported in the literature. In the case of the simultaneous presence of nitrate and MO, it is found that nitrate ions removal is slightly affected by the presence of the dye, since both contaminants compete for electrostatic interaction with imidazole groups. On the contrary, the dye removal does not show significant change with or without the presence of nitrate ions, probably due to other kinds of interaction that it can establish with the polymer surface (π-π interaction). The adsorption process and the related mechanisms are described using kinetic and isothermal models. Despite a certain reduction in the adsorption efficiency for one of the investigated contaminants, the results confirm the possibility of using the quaternized pentablock copolymer for the co-adsorption of both inorganic and organic anions.

Kinetic and Isotherm Studies of Organic and Inorganic Anions Adsorption from Water by Quaternized Pentablock Copolymeric Film (PTBr)

Crispi, Simona;Iannazzo, Daniela;Celesti, Consuelo;
2025-01-01

Abstract

Nowadays, nitrate ions and azo dyes are a significant source of water pollution due to their high toxicity, persistence, and potential to be carcinogenic. Both contaminants are the result of anthropogenic sources, such as sewage or industrial wastewater discharge; the first one results also as a consequence of the intensive use of fertilizers. In this work we report the use of a new quaternized pentablock copolymer (PTBr) for the removal of nitrate ions and methyl orange (MO) dye from water by adsorption processes. Morphological, chemical, and thermal properties of the pentablock copolymer were investigated, respectively, by scanning electron microscopy (SEM), Attenuated Total Reflectance Infrared Spectroscopy (ATR-FTIR) (FT-IR), and X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) analyses. Anionic removal ability and adsorption rate in water solutions containing either a single contaminant species or a mix of the two contaminants were studied by UV–VIS absorbance spectroscopy as a function of time and initial concentration. The presence of imidazole groups confers on PTBr a positive charge and a hydrophilic character that are responsible for an effective removal of anions from water. PTBr film reports an adsorption efficiency of 10.15 mg/g for nitrate removal and this value is in line with others reported in the literature. In the case of the simultaneous presence of nitrate and MO, it is found that nitrate ions removal is slightly affected by the presence of the dye, since both contaminants compete for electrostatic interaction with imidazole groups. On the contrary, the dye removal does not show significant change with or without the presence of nitrate ions, probably due to other kinds of interaction that it can establish with the polymer surface (π-π interaction). The adsorption process and the related mechanisms are described using kinetic and isothermal models. Despite a certain reduction in the adsorption efficiency for one of the investigated contaminants, the results confirm the possibility of using the quaternized pentablock copolymer for the co-adsorption of both inorganic and organic anions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3339050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact