We investigate the existence of multiple nontrivial solutions of a quasilinear elliptic Dirichlet problem depending on a parameter λ > 0 of the form -Δpu = λf(u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain, Δp, 1 < p < +∞, is the p-Laplacian, and f: R → R is a continuous function satisfying a sub-critical growth condition. More precisely, we establish a variational approach that when combined with differential inequality techniques, allows us to explicitly describe intervals for the parameter λ for which the problem under consideration admits nontrivial constant-sign as well as nodal (sign-changing) solutions. In our approach, a crucial role plays an abstract critical point result for functionals whose critical points are attained in certain open level sets. To the best of our knowledge, the novelty of this paper is twofold. First, neither an asymptotic condition for f at zero nor at infinity is required to ensure multiple constant-sign solutions. Second, only by imposing some lim inf and lim sup condition of f at zero, the existence of at least three nontrivial solutions including one nodal solution can be proved.

Critical points in open sublevels and multiple solutions for parameter-depending quasilinear elliptic equations

Livrea R.
2014-01-01

Abstract

We investigate the existence of multiple nontrivial solutions of a quasilinear elliptic Dirichlet problem depending on a parameter λ > 0 of the form -Δpu = λf(u) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a bounded domain, Δp, 1 < p < +∞, is the p-Laplacian, and f: R → R is a continuous function satisfying a sub-critical growth condition. More precisely, we establish a variational approach that when combined with differential inequality techniques, allows us to explicitly describe intervals for the parameter λ for which the problem under consideration admits nontrivial constant-sign as well as nodal (sign-changing) solutions. In our approach, a crucial role plays an abstract critical point result for functionals whose critical points are attained in certain open level sets. To the best of our knowledge, the novelty of this paper is twofold. First, neither an asymptotic condition for f at zero nor at infinity is required to ensure multiple constant-sign solutions. Second, only by imposing some lim inf and lim sup condition of f at zero, the existence of at least three nontrivial solutions including one nodal solution can be proved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3341260
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact