We consider a parametric semilinear elliptic equation with a Cara-theodory reaction which exhibits competing nonlinearities. It is "concave" (sub-linear) near the origin and "convex" (superlinear) or linear near +∞. Using variational methods based on the critical point theory, coupled with suitable truncation and comparison techniques, we prove a bifurcation-type theorem, describing the set of positive solutions as the parameter varies.

Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions

Barletta G.;Livrea R.;
2016-01-01

Abstract

We consider a parametric semilinear elliptic equation with a Cara-theodory reaction which exhibits competing nonlinearities. It is "concave" (sub-linear) near the origin and "convex" (superlinear) or linear near +∞. Using variational methods based on the critical point theory, coupled with suitable truncation and comparison techniques, we prove a bifurcation-type theorem, describing the set of positive solutions as the parameter varies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3341266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact