We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ((a,2)-type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal.
Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero
Livrea R.
2019-01-01
Abstract
We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ((a,2)-type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


