In neurons, mitochondria generate energy through ATP production, thereby sustaining the high energy demands of the central nervous system (CNS). Mitochondrial dysfunction within the CNS was implicated in the pathogenesis and progression of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, often involving altered mitochondrial dynamics like fragmentation and functional impairment. Accordingly, mitochondrial targeting represents an alternative therapeutic strategy for the treatment of these disorders. Current standard drug treatments present limitations due to adverse effects associated with their chronic use. Therefore, in recent years, nutraceuticals, natural compounds exhibiting diverse biological activities, have garnered significant attention for their potential to treat these diseases. It has been shown that these compounds represent safe and easily available sources for the development of innovative therapeutics, and by modulating mitochondrial function, nutraceuticals offer a promising approach to address neurodegenerative pathologies. We referred to approximately 200 articles published between 2020 and 2025, identified through a focused search across PubMed, Google Scholar, and Scopus using keywords such as “nutraceutical,” “mitochondrial dysfunction,” and “neurodegenerative diseases. The purpose of this review is to examine how mitochondrial dysfunction contributes to the genesis and progression of neurodegenerative diseases. Also, we discuss recent advances in mitochondrial targeting using nutraceuticals, focusing on their mechanisms of action related to mitochondrial biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability.

Nutraceutical Strategies for Targeting Mitochondrial Dysfunction in Neurodegenerative Diseases

Iaconis, Antonella;Cordaro, Marika;Di Paola, Rosanna;Fusco, Roberta
2025-01-01

Abstract

In neurons, mitochondria generate energy through ATP production, thereby sustaining the high energy demands of the central nervous system (CNS). Mitochondrial dysfunction within the CNS was implicated in the pathogenesis and progression of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, often involving altered mitochondrial dynamics like fragmentation and functional impairment. Accordingly, mitochondrial targeting represents an alternative therapeutic strategy for the treatment of these disorders. Current standard drug treatments present limitations due to adverse effects associated with their chronic use. Therefore, in recent years, nutraceuticals, natural compounds exhibiting diverse biological activities, have garnered significant attention for their potential to treat these diseases. It has been shown that these compounds represent safe and easily available sources for the development of innovative therapeutics, and by modulating mitochondrial function, nutraceuticals offer a promising approach to address neurodegenerative pathologies. We referred to approximately 200 articles published between 2020 and 2025, identified through a focused search across PubMed, Google Scholar, and Scopus using keywords such as “nutraceutical,” “mitochondrial dysfunction,” and “neurodegenerative diseases. The purpose of this review is to examine how mitochondrial dysfunction contributes to the genesis and progression of neurodegenerative diseases. Also, we discuss recent advances in mitochondrial targeting using nutraceuticals, focusing on their mechanisms of action related to mitochondrial biogenesis, fusion, fission, bioenergetics, oxidative stress, calcium homeostasis, membrane potential, and mitochondrial DNA stability.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3341544
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact