The existence of at least one positive solution to a second-order nonlinear two-point boundary value problem, is established. Combining difference methods with Brouwer fixed point and Ascolì-Arzelà theorems, we get a solution as the limit of an appropriate sequence of piecewise linear interpolations. Furthermore, a priori bounds on the infinite norm of a solution and its derivatives are pointed out. Some examples are also discussed to illustrate our results.

EXISTENCE AND APPROXIMATION OF A SOLUTION FOR A TWO POINT NONLINEAR DIRICHLET PROBLEM

Livrea R.;
2025-01-01

Abstract

The existence of at least one positive solution to a second-order nonlinear two-point boundary value problem, is established. Combining difference methods with Brouwer fixed point and Ascolì-Arzelà theorems, we get a solution as the limit of an appropriate sequence of piecewise linear interpolations. Furthermore, a priori bounds on the infinite norm of a solution and its derivatives are pointed out. Some examples are also discussed to illustrate our results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3341651
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact