The effects of partially replacing soybean meal (SBM) with a slow-release urea source (SRU) on production performance, feed efficiency, digestibility, and environmental sustainability of dairy cows were evaluated. A total of 140 lactating Holstein Frisian cows were allocated into two study groups: (i) control (diet entirely based on SBM), and (ii) treatment (diet of 0.22% on dry matter basis (d.m.)) of SRU. Milk yield, dry matter intake (DMI), feed conversion rate (FCR), body condition score (BCS), reproductive parameters, and milk quality were evaluated. The chemical composition of the feeds and feces were analyzed to calculate the in vivo digestibility of the two diets. The carbon footprint (CFP) and predicted methane (CH4 ) emissions were evaluated. The inclusion of SRU significantly increases milk yield, DMI, and FCR (p < 0.0001), whereas milk quality, BCS, and reproductive indicators were not affected (p > 0.05). In the treatment group, the digestibility of crude protein (CP) (p = 0.012), NDF (p = 0.039), and cellulose (p = 0.033) was significantly higher, while the other nutritional parameters weren’t affected. All the environmental parameters were significantly improved in the treatment group (p < 0.0001). Replacing SBM with SRU can be a strategy to enhance dairy cows’ sustainability due to improved production efficiency, reduced feed CFP, and predicted CH₄ production.

Effect of slow-release urea administration on production performance, health status, diet digestibility, and environmental sustainability in lactating dairy cows

Dell'Anno, Matteo;
2021-01-01

Abstract

The effects of partially replacing soybean meal (SBM) with a slow-release urea source (SRU) on production performance, feed efficiency, digestibility, and environmental sustainability of dairy cows were evaluated. A total of 140 lactating Holstein Frisian cows were allocated into two study groups: (i) control (diet entirely based on SBM), and (ii) treatment (diet of 0.22% on dry matter basis (d.m.)) of SRU. Milk yield, dry matter intake (DMI), feed conversion rate (FCR), body condition score (BCS), reproductive parameters, and milk quality were evaluated. The chemical composition of the feeds and feces were analyzed to calculate the in vivo digestibility of the two diets. The carbon footprint (CFP) and predicted methane (CH4 ) emissions were evaluated. The inclusion of SRU significantly increases milk yield, DMI, and FCR (p < 0.0001), whereas milk quality, BCS, and reproductive indicators were not affected (p > 0.05). In the treatment group, the digestibility of crude protein (CP) (p = 0.012), NDF (p = 0.039), and cellulose (p = 0.033) was significantly higher, while the other nutritional parameters weren’t affected. All the environmental parameters were significantly improved in the treatment group (p < 0.0001). Replacing SBM with SRU can be a strategy to enhance dairy cows’ sustainability due to improved production efficiency, reduced feed CFP, and predicted CH₄ production.
2021
File in questo prodotto:
File Dimensione Formato  
animals-11-02405.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3341846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact