Bacterial infections pose a significant health threat, worsened by the growing issue of antibiotic resistance and biofilm formation. Phototherapies, particularly photodynamic therapy (PDT), offer promising non-invasive alternatives due to their high efficacy and minimal side effects. These therapies utilize photosensitizers (PSs), which, when activated by light, generate reactive oxygen species (ROS) that lead to bacterial cell death. Recent advancements have focused on enhancing PDT by integrating PSs with nanomaterials. Halloysite nanotubes (HNTs), a natural clay mineral, are of particular interest due to their unique properties, including intrinsic antibacterial activity and the ability to integrate into bacterial biofilms. By combining HNTs with photosensitizers, we aimed to improve treatment efficacy. In this study, we synthesized a novel glucosyl OPE derivative and covalently attached it to HNTs, forming the composite HNTs@Glu-OPE. This system was thoroughly characterized, and its ROS generation capabilities were tested under 365 nm light irradiation using uric acid as a probe. Loaded with vancomycin, HNTs@Glu-OPE represents a multifunctional approach to PDT, enhancing both the delivery and effectiveness of therapeutic agents against resistant bacterial strains.

Glucosyl OPE-modified halloysite nanotubes and their potential as phototherapy agents for bacterial infections

Massaro M.
Co-primo
Writing – Original Draft Preparation
;
Bonaccorsi P. M.
Writing – Review & Editing
;
Gangemi C. M. A.
Investigation
;
Puntoriero F.
Formal Analysis
;
Barattucci A.
Writing – Original Draft Preparation
2025-01-01

Abstract

Bacterial infections pose a significant health threat, worsened by the growing issue of antibiotic resistance and biofilm formation. Phototherapies, particularly photodynamic therapy (PDT), offer promising non-invasive alternatives due to their high efficacy and minimal side effects. These therapies utilize photosensitizers (PSs), which, when activated by light, generate reactive oxygen species (ROS) that lead to bacterial cell death. Recent advancements have focused on enhancing PDT by integrating PSs with nanomaterials. Halloysite nanotubes (HNTs), a natural clay mineral, are of particular interest due to their unique properties, including intrinsic antibacterial activity and the ability to integrate into bacterial biofilms. By combining HNTs with photosensitizers, we aimed to improve treatment efficacy. In this study, we synthesized a novel glucosyl OPE derivative and covalently attached it to HNTs, forming the composite HNTs@Glu-OPE. This system was thoroughly characterized, and its ROS generation capabilities were tested under 365 nm light irradiation using uric acid as a probe. Loaded with vancomycin, HNTs@Glu-OPE represents a multifunctional approach to PDT, enhancing both the delivery and effectiveness of therapeutic agents against resistant bacterial strains.
2025
Inglese
Inglese
No
Elsevier B.V.
62
106207
106214
8
Internazionale
Esperti anonimi
Antibiotics; Covalent modification; Halloysite; Oligo(phenylene ethynylene); Photodynamic therapy
info:eu-repo/semantics/article
Mancuso, A.; Massaro, M.; Leone, F.; Bonaccorsi, P. M.; Compagnini, G.; Gangemi, C. M. A.; Puntoriero, F.; Ribagorda, M.; Scardaci, V.; Viseras, C.; R...espandi
14.a Contributo in Rivista::14.a.1 Articolo su rivista
12
262
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3343575
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact