Shipbuilding and offshore structures employ a wide range of metallic materials, from standard and high-strength steels to non-ferrous aluminium and titanium alloys. While welding remains the dominant joining method, the reliable joining of dissimilar metals still presents significant challenges. The explosion welding (EXW) technique has been increasingly adopted over traditional methods for joining dissimilar metallic materials, due to the advantage of avoiding constraints related to metallurgical incompatibility. The EXW is a solid-state joining process in which an explosive detonation provides the energy required to drive two metal surfaces into high-velocity collision, producing a metallurgical bond. This process results in partial melting at the wavy interface and the formation of intermetallic properties, which can lead to cracking when exposed to dynamic loading. A well-established application in shipbuilding is the connection of an aluminium superstructure to steel decks. This study evaluates the mechanical behaviour of aluminium–steel explosion-welded joints for ship structures. The examined joints comprise ASTM A516 Gr55 structural steel, clad by explosion welding with AA5086 aluminium alloy using an intermediate layer of AA1050 commercially pure aluminium. Tensile tests were carried out using full-field techniques, such as digital image correlation (DIC) and infrared thermography (IRT).
Dissimilar Welded Joints and Sustainable Materials for Ship Structures
Brando, Giuseppe;Distefano, Fabio;Di Carolo, Francesca;Crupi, Vincenzo;Epasto, Gabriella
;
2025-01-01
Abstract
Shipbuilding and offshore structures employ a wide range of metallic materials, from standard and high-strength steels to non-ferrous aluminium and titanium alloys. While welding remains the dominant joining method, the reliable joining of dissimilar metals still presents significant challenges. The explosion welding (EXW) technique has been increasingly adopted over traditional methods for joining dissimilar metallic materials, due to the advantage of avoiding constraints related to metallurgical incompatibility. The EXW is a solid-state joining process in which an explosive detonation provides the energy required to drive two metal surfaces into high-velocity collision, producing a metallurgical bond. This process results in partial melting at the wavy interface and the formation of intermetallic properties, which can lead to cracking when exposed to dynamic loading. A well-established application in shipbuilding is the connection of an aluminium superstructure to steel decks. This study evaluates the mechanical behaviour of aluminium–steel explosion-welded joints for ship structures. The examined joints comprise ASTM A516 Gr55 structural steel, clad by explosion welding with AA5086 aluminium alloy using an intermediate layer of AA1050 commercially pure aluminium. Tensile tests were carried out using full-field techniques, such as digital image correlation (DIC) and infrared thermography (IRT).Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


