Goldfish (Carassius auratus) gills function as both respiratory and immune-regulatory organs, integrating neuroendocrine and immune responses to environmental stimuli. This study explores the spatial organization and interaction of neuroendocrine cells (NECs) and immune cells within goldfish gills using confocal immunohistochemistry and transmission electron microscopy. NECs, identified near blood capillaries and nerve fibers, highlight their role in environmental sensing and physiological regulation. These cells express serotonin (5-HT), a neurotransmitter critical for neuroimmune communication. Two distinct macrophage subsets were observed: iNOS-positive macrophages, concentrated in the basal epithelium, suggest a pro-inflammatory role, whereas 5-HT-positive macrophages, dispersed in the subepithelium, likely contribute to immune modulation. The co-localization of MHC-II and CD68 in macrophages further supports an active antigen-processing system in the gills. Ultrastructural analysis revealed diverse immune cells, including rodlet cells, telocytes, and lymphocytes, within the gill epithelium. Telocytes formed intricate networks with immune cells, highlighting their role in immune coordination and tissue homeostasis. These findings provide new insights into the neuroimmune interactions in fish gills, contributing to a broader understanding of aquatic immune systems and environmental adaptability.

Serotonin Signaling and Macrophage Subsets in Goldfish Gills: Unraveling the Neuroimmune Network for Gill Homeostasis

Albano M.
Writing – Review & Editing
;
2025-01-01

Abstract

Goldfish (Carassius auratus) gills function as both respiratory and immune-regulatory organs, integrating neuroendocrine and immune responses to environmental stimuli. This study explores the spatial organization and interaction of neuroendocrine cells (NECs) and immune cells within goldfish gills using confocal immunohistochemistry and transmission electron microscopy. NECs, identified near blood capillaries and nerve fibers, highlight their role in environmental sensing and physiological regulation. These cells express serotonin (5-HT), a neurotransmitter critical for neuroimmune communication. Two distinct macrophage subsets were observed: iNOS-positive macrophages, concentrated in the basal epithelium, suggest a pro-inflammatory role, whereas 5-HT-positive macrophages, dispersed in the subepithelium, likely contribute to immune modulation. The co-localization of MHC-II and CD68 in macrophages further supports an active antigen-processing system in the gills. Ultrastructural analysis revealed diverse immune cells, including rodlet cells, telocytes, and lymphocytes, within the gill epithelium. Telocytes formed intricate networks with immune cells, highlighting their role in immune coordination and tissue homeostasis. These findings provide new insights into the neuroimmune interactions in fish gills, contributing to a broader understanding of aquatic immune systems and environmental adaptability.
2025
Inglese
Inglese
0
MDPI
15
5
751
771
21
Internazionale
Esperti anonimi
adaptive immunity; bio-defense; fluorescence intensity curve; macrophage subsets; neuroimmune interaction; serotonin signaling; telocyte networks
info:eu-repo/semantics/article
Hussein, M. T.; Zaccone, G.; Albano, M.; Alesci, A.; Marino, S.; Alonaizan, R.; Mokhtar, D. M.
14.a Contributo in Rivista::14.a.1 Articolo su rivista
7
262
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3345191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact