Let R be a prime ring of characteristic ≠ 2 with a derivation d ≠ 0, L a non central Lie ideal of R such that [d(u), u]n is central, for all u ∈ L. We prove that R must satisfy s4 the standard identity in 4 variables. We also examine the case R is a 2-torsion free semiprime ring and [d([x, y]), [x, y]]n is central, for all x, y ∈ R.

Commutators with power central values on a Lie ideal

CARINI, Luisa;DE FILIPPIS, Vincenzo
2000-01-01

Abstract

Let R be a prime ring of characteristic ≠ 2 with a derivation d ≠ 0, L a non central Lie ideal of R such that [d(u), u]n is central, for all u ∈ L. We prove that R must satisfy s4 the standard identity in 4 variables. We also examine the case R is a 2-torsion free semiprime ring and [d([x, y]), [x, y]]n is central, for all x, y ∈ R.
2000
File in questo prodotto:
File Dimensione Formato  
Carini-De Filippis Pacific.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 197.22 kB
Formato Adobe PDF
197.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/1708251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 46
social impact