Let R be a prime ring of characteristic ≠ 2 with a derivation d ≠ 0, L a non central Lie ideal of R such that [d(u), u]n is central, for all u ∈ L. We prove that R must satisfy s4 the standard identity in 4 variables. We also examine the case R is a 2-torsion free semiprime ring and [d([x, y]), [x, y]]n is central, for all x, y ∈ R.
Commutators with power central values on a Lie ideal
CARINI, Luisa;DE FILIPPIS, Vincenzo
2000-01-01
Abstract
Let R be a prime ring of characteristic ≠ 2 with a derivation d ≠ 0, L a non central Lie ideal of R such that [d(u), u]n is central, for all u ∈ L. We prove that R must satisfy s4 the standard identity in 4 variables. We also examine the case R is a 2-torsion free semiprime ring and [d([x, y]), [x, y]]n is central, for all x, y ∈ R.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Carini-De Filippis Pacific.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
197.22 kB
Formato
Adobe PDF
|
197.22 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.