The search of small molecules as protein–protein interaction inhibitors represents a new attractive strategy to develop anti-HIV-1 agents. We previously reported a computational study that led to the discovery of new inhibitors of the interaction between enzyme HIV-1 integrase (IN) and the nuclear protein lens epithelium growth factor LEDGF/p75.1 Herein, we describe new findings about the binding site of LEDGF/p75 on IN employing a different computational approach. In this way further structural requirements, helpful to disrupt LEDGF/p75-IN binding, have been identified. The main result of this work was the exploration of a relevant hydrophobic region. So we planned the introduction of suitable and simple chemical modifications on our previously reported ‘hit’ and the new synthesized compounds were subjected to biological tests. The results obtained demonstrate that the hydrophobic pocket could play a key role in improving inhibitory efficacy thus opening new suggestions to design active ligands.
Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor.
DE LUCA, Laura;FERRO, Stefania;GITTO, Rosaria;AGNELLO, STEFANO;CHIMIRRI, Alba
2010-01-01
Abstract
The search of small molecules as protein–protein interaction inhibitors represents a new attractive strategy to develop anti-HIV-1 agents. We previously reported a computational study that led to the discovery of new inhibitors of the interaction between enzyme HIV-1 integrase (IN) and the nuclear protein lens epithelium growth factor LEDGF/p75.1 Herein, we describe new findings about the binding site of LEDGF/p75 on IN employing a different computational approach. In this way further structural requirements, helpful to disrupt LEDGF/p75-IN binding, have been identified. The main result of this work was the exploration of a relevant hydrophobic region. So we planned the introduction of suitable and simple chemical modifications on our previously reported ‘hit’ and the new synthesized compounds were subjected to biological tests. The results obtained demonstrate that the hydrophobic pocket could play a key role in improving inhibitory efficacy thus opening new suggestions to design active ligands.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.