This paper describes the application of a methodology for the evaluation of debris-flow risk in alluvial fans by incorporating numerical simulations with Geographical Information Systems to identify potential debris-flow hazard areas. The methodology was applied to a small catchment located in the north-eastern part of Sicily, Italy where an extreme debris flow event occurred in October 2007. The adopted approach integrates a slope stability model that identifies the areas of potential shallow landslides under different meteorological conditions using a two-dimensional finite-element model based on the De Saint Venant equation for the debris-flow propagation. The mechanical properties of the debris were defined using both laboratory and in situ test results. The risk classification of the area under study was derived using total hydrodynamic force per unit width (impact pressure) as an indicator for event intensity. Based on the simulation results, a potential risk zone was identified and mapped.

Assessment and mapping of debris flow risk in a small catchment in Eastern Sicily through integrated numerical simulations and GIS

ARONICA, Giuseppe Tito;CASCONE, Ernesto;BRIGANDI', GIUSEPPINA;BIONDI, Giovanni;RANDAZZO, Giovanni;LANZA, Stefania
2012-01-01

Abstract

This paper describes the application of a methodology for the evaluation of debris-flow risk in alluvial fans by incorporating numerical simulations with Geographical Information Systems to identify potential debris-flow hazard areas. The methodology was applied to a small catchment located in the north-eastern part of Sicily, Italy where an extreme debris flow event occurred in October 2007. The adopted approach integrates a slope stability model that identifies the areas of potential shallow landslides under different meteorological conditions using a two-dimensional finite-element model based on the De Saint Venant equation for the debris-flow propagation. The mechanical properties of the debris were defined using both laboratory and in situ test results. The risk classification of the area under study was derived using total hydrodynamic force per unit width (impact pressure) as an indicator for event intensity. Based on the simulation results, a potential risk zone was identified and mapped.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2059821
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact