BACKGROUND: Diffusion tensor imaging tractography provides 3-dimensional recon- struction of principal white matter tracts, but its spatial accuracy has been questioned. Navigated transcranial magnetic stimulation (nTMS) enables somatotopic mapping of the motor cortex. OBJECTIVE: We used motor maps to reconstruct the corticospinal tract (CST) by integrating elements of its somatotopic organization. We analyzed the accuracy of this method compared with a standard technique and verified its reliability with intra- operative subcortical stimulation. METHODS: We prospectively collected data from patients who underwent surgery between January 2012 and October 2013 for lesions involving the CST. nTMS-based dif- fusion tensor imaging tractography was compared with a standard technique. The reliability and accuracy between the 2 techniques were analyzed by comparing the number of fibers, the concordance in size, and the location of the cortical end of the CST and the motor area. The accuracy of the technique was assessed by using direct subcortical stimulation. RESULTS: Twenty patients were enrolled in the study. nTMS-based tractography provided a detailed somatotopic reconstruction of the CST. This nTMS-based reconstruction resulted in a decreased number of fibers (305.1 6 231.7 vs 1024 6 193, P , .001) and a significantly greater overlap between the motor cortex and the cortical end-region of the CST compared with the standard technique (90.5 6 8.8% vs 58.3 6 16.6%, P , .001). Direct subcortical stimulation confirmed the CST location and the somatotopic reconstruction in all cases. CONCLUSION: These results suggest that nTMS-based tractography of the CST is more accurate and less operator dependent than the standard technique and provides a reliable anatomic and functional characterization of the motor pathway.

Navigated Transcranial Magnetic Stimulation for "Somatotopic" Tractography of the Cortico-Spinal Tract.

CONTI, Alfredo;RAFFA, giovanni;GRANATA, Francesca;RIZZO, VINCENZO;GERMANO', Antonino Francesco;TOMASELLO, Francesco
2014-01-01

Abstract

BACKGROUND: Diffusion tensor imaging tractography provides 3-dimensional recon- struction of principal white matter tracts, but its spatial accuracy has been questioned. Navigated transcranial magnetic stimulation (nTMS) enables somatotopic mapping of the motor cortex. OBJECTIVE: We used motor maps to reconstruct the corticospinal tract (CST) by integrating elements of its somatotopic organization. We analyzed the accuracy of this method compared with a standard technique and verified its reliability with intra- operative subcortical stimulation. METHODS: We prospectively collected data from patients who underwent surgery between January 2012 and October 2013 for lesions involving the CST. nTMS-based dif- fusion tensor imaging tractography was compared with a standard technique. The reliability and accuracy between the 2 techniques were analyzed by comparing the number of fibers, the concordance in size, and the location of the cortical end of the CST and the motor area. The accuracy of the technique was assessed by using direct subcortical stimulation. RESULTS: Twenty patients were enrolled in the study. nTMS-based tractography provided a detailed somatotopic reconstruction of the CST. This nTMS-based reconstruction resulted in a decreased number of fibers (305.1 6 231.7 vs 1024 6 193, P , .001) and a significantly greater overlap between the motor cortex and the cortical end-region of the CST compared with the standard technique (90.5 6 8.8% vs 58.3 6 16.6%, P , .001). Direct subcortical stimulation confirmed the CST location and the somatotopic reconstruction in all cases. CONCLUSION: These results suggest that nTMS-based tractography of the CST is more accurate and less operator dependent than the standard technique and provides a reliable anatomic and functional characterization of the motor pathway.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/2797368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 72
social impact