A broad biological screening of the natural alkaloid N-methylisosalsoline (2) extracted from Hammada scoparia leaves against a panel of human and parasitic proteases revealed an interesting activity profile of 2 towards human 20S proteasome. This outcome suggests that the 1,2,3,4-tetrahydroisoquinoline skeleton may be exploited as a template for the development of novel anticancer agents. In this article, we report the synthesis and chemical characterization of a new series of isosalsoline-type alkaloids (10-11) with variations at N2 and C3 positions with respect to the natural Compound 2, obtained by a synthetic strategy that involves the Bischler-Napieralski cyclization. The substrate for the condensation to the tetrahydroisoquinoline system, i.e., a functionalized β-arylethyl amine, was obtained through an original double reduction of nitroalkene. The synthetic strategy can be directed to the construction of highly substituted and functionalized 1,2,3,4-tetrahydroisoquinolines.

Synthesis of C3/C1-Substituted Tetrahydroisoquinolines

MICALE, Nicola;SCALA, ANGELA;RISITANO, Francesco;PIPERNO, Anna
;
GRASSI, Giovanni
2015-01-01

Abstract

A broad biological screening of the natural alkaloid N-methylisosalsoline (2) extracted from Hammada scoparia leaves against a panel of human and parasitic proteases revealed an interesting activity profile of 2 towards human 20S proteasome. This outcome suggests that the 1,2,3,4-tetrahydroisoquinoline skeleton may be exploited as a template for the development of novel anticancer agents. In this article, we report the synthesis and chemical characterization of a new series of isosalsoline-type alkaloids (10-11) with variations at N2 and C3 positions with respect to the natural Compound 2, obtained by a synthetic strategy that involves the Bischler-Napieralski cyclization. The substrate for the condensation to the tetrahydroisoquinoline system, i.e., a functionalized β-arylethyl amine, was obtained through an original double reduction of nitroalkene. The synthetic strategy can be directed to the construction of highly substituted and functionalized 1,2,3,4-tetrahydroisoquinolines.
2015
File in questo prodotto:
File Dimensione Formato  
molecules-20-14902.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 809.24 kB
Formato Adobe PDF
809.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3061835
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact