The present contribution is focused on the on-line combination of high performance liquid chromatography (HPLC), cryogenically modulated comprehensive two-dimensional gas chromatography (GC × GC), and triple quadrupole mass spectrometry (QqQ MS), generating a very powerful unified separation-science tool. The instrument can be used in seven different combinations ranging from one-dimensional HPLC with a photodiode array detector to on-line LC × GC × GC/QqQ MS. The main focus of the present research is directed to the LC-GC × GC/QqQ MS configuration, with its analytical potential shown in a proof-of-principle study involving a very complex sample, namely, coal tar. Specifically, a normal-phase LC process enabled the separation of three classes of coal tar compounds: (1) nonaromatic hydrocarbons; (2) unsaturated compounds (with and without S); (3) oxygenated constituents. The HPLC fractions were transferred to the GC × GC instrument via a syringe-based interface mounted on an autosampler. Each fraction was subjected to a specific programmed temperature vaporizer GC × GC/QqQ MS untargeted or targeted analysis. For example, the coal tar S-containing compounds were pinpointed through multiple-reaction-monitoring analysis, while full-scan information was attained for the oxygenated constituents.

On-line combination of high performance liquid chromatography with comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry: A proof of principle study

ZOCCALI, MARIOSIMONE
Primo
;
TRANCHIDA, Peter Quinto
Secondo
;
MONDELLO, Luigi
Ultimo
2015-01-01

Abstract

The present contribution is focused on the on-line combination of high performance liquid chromatography (HPLC), cryogenically modulated comprehensive two-dimensional gas chromatography (GC × GC), and triple quadrupole mass spectrometry (QqQ MS), generating a very powerful unified separation-science tool. The instrument can be used in seven different combinations ranging from one-dimensional HPLC with a photodiode array detector to on-line LC × GC × GC/QqQ MS. The main focus of the present research is directed to the LC-GC × GC/QqQ MS configuration, with its analytical potential shown in a proof-of-principle study involving a very complex sample, namely, coal tar. Specifically, a normal-phase LC process enabled the separation of three classes of coal tar compounds: (1) nonaromatic hydrocarbons; (2) unsaturated compounds (with and without S); (3) oxygenated constituents. The HPLC fractions were transferred to the GC × GC instrument via a syringe-based interface mounted on an autosampler. Each fraction was subjected to a specific programmed temperature vaporizer GC × GC/QqQ MS untargeted or targeted analysis. For example, the coal tar S-containing compounds were pinpointed through multiple-reaction-monitoring analysis, while full-scan information was attained for the oxygenated constituents.
2015
File in questo prodotto:
File Dimensione Formato  
381 paper 04-15.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
3061861_Supporting Information.pdf

solo utenti autorizzati

Descrizione: On-Line Combination of High Performance Liquid Chromatography with Comprehensive Two-Dimensional ...
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 529.17 kB
Formato Adobe PDF
529.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3061861
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact