A class of hyperbolic reaction–diffusion models is derived within the context of Extended Thermodynamics. This kind of models avoids the unphysical features concerning the instantaneous diffusive effects typical of parabolic equations and it results to be suitable for describing invasive phenomena with a welldefined boundary. Under suitable assumptions the non-existence of smooth travelling waves is proved within a region in the state-space. As an illustrative example of such a theoretical analysis, a model describing the infiltration of rain water in semi-arid environment is derived and both continuous and discontinuous travelling waves are investigated.

On discontinuous travelling wave solutions for a class of hyperbolic reaction–diffusion models

BARBERA, Elvira;CURRO', Carmela
;
VALENTI, Giovanna
2015-01-01

Abstract

A class of hyperbolic reaction–diffusion models is derived within the context of Extended Thermodynamics. This kind of models avoids the unphysical features concerning the instantaneous diffusive effects typical of parabolic equations and it results to be suitable for describing invasive phenomena with a welldefined boundary. Under suitable assumptions the non-existence of smooth travelling waves is proved within a region in the state-space. As an illustrative example of such a theoretical analysis, a model describing the infiltration of rain water in semi-arid environment is derived and both continuous and discontinuous travelling waves are investigated.
2015
File in questo prodotto:
File Dimensione Formato  
PHYSD_manuscript.pdf

solo utenti autorizzati

Descrizione: Pre-print
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Dimensione 620.81 kB
Formato Adobe PDF
620.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3062913.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 919.4 kB
Formato Adobe PDF
919.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3062613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact