This study reports the recent evolution of a multidimensional GC-GC-GC preparative system, now combined with an online LC preseparation step, operated under normal phase conditions. It is herein shown that the four-dimensional instrument can collect sample components with a concentration lower than 10%, in a short time period, while maintaining a high level of analyte purity. The LC dimension allows (I) the injection of higher sample amounts, compared to "direct" GC injection; (II) a polarity-based preseparation, leading to the GC injection of simplified subsamples, and thus reducing the possibility of coelutions; (III) to eliminate the essential-oil "matrix", replacing it with the LC mobile phase (the GC system is more protected from potential contamination); (IV) the LC mobile phase is of much lower viscosity with respect to a pure, or highly concentrated essential oil, avoiding difficulties in the syringe sample withdrawal process, prior to GC injection. System optimization was performed by using standard solutions; in addition, a very complex sample, namely, vetiver essential oil, was subjected to the preparative process, with the scope of isolating two low-amount constituents (namely, α-amorphene and β-vetivone). The latter two sesquiterpenoids, which accounted for 1.7 and 4.0% of the sample (considering the volatiles), respectively, were successfully collected at the milligram level, in a one-day work period, with a purity degree in excess of 90%.

Rapid Isolation of High Solute Amounts by Using a Totally Orthogonal On-line Four-Dimensional Preparative System: Normal Phase-Liquid Chromatography Coupled to Methyl Siloxane-Ionic Liquid-Wax Phase Gas Chromatography

SCIARRONE, Danilo;PANTO', SEBASTIANO;TRANCHIDA, Peter Quinto;DUGO, Paola;MONDELLO, Luigi
2014-01-01

Abstract

This study reports the recent evolution of a multidimensional GC-GC-GC preparative system, now combined with an online LC preseparation step, operated under normal phase conditions. It is herein shown that the four-dimensional instrument can collect sample components with a concentration lower than 10%, in a short time period, while maintaining a high level of analyte purity. The LC dimension allows (I) the injection of higher sample amounts, compared to "direct" GC injection; (II) a polarity-based preseparation, leading to the GC injection of simplified subsamples, and thus reducing the possibility of coelutions; (III) to eliminate the essential-oil "matrix", replacing it with the LC mobile phase (the GC system is more protected from potential contamination); (IV) the LC mobile phase is of much lower viscosity with respect to a pure, or highly concentrated essential oil, avoiding difficulties in the syringe sample withdrawal process, prior to GC injection. System optimization was performed by using standard solutions; in addition, a very complex sample, namely, vetiver essential oil, was subjected to the preparative process, with the scope of isolating two low-amount constituents (namely, α-amorphene and β-vetivone). The latter two sesquiterpenoids, which accounted for 1.7 and 4.0% of the sample (considering the volatiles), respectively, were successfully collected at the milligram level, in a one-day work period, with a purity degree in excess of 90%.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3064142
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact