Nitric oxide (NO) is a gaseous neurotransmitter, which, in adult mammals, modulates the acute hypoxic ventilatory response; its role in the control of breathing in fish during development is unknown. We addressed the interactive effects of developmental age and NO in the control of piscine breathing by measuring the ventilatory response of zebrafish (Danio rerio) adults and larvae to NO donors and by inhibiting endogenous production of NO. In adults, sodium nitroprusside (SNP), a NO donor, inhibited ventilation; the extent of the ventilatory inhibition was related to the pre-existing ventilatory drive, with the greatest inhibition exhibited during exposure to hypoxia (P-O2 = 5.6 kPa). Inhibition of endogenous NO production using L-NAME suppressed the hypoventilatory response to hyperoxia, supporting an inhibitory role of NO in adult zebrafish. Neuroepithelial cells (NECs), the putative oxygen chemoreceptors of fish, contain neuronal nitric oxide synthase (nNOS). In zebrafish larvae at 4 days post-fertilization, SNP increased ventilation in a concentration-dependent manner. Inhibition of NOS activity with L-NAME or knockdown of nNOS inhibited the hypoxic (P-O2 = 3.5 kPa) ventilatory response. Immunohistochemistry revealed the presence of nNOS in the NECs of larvae. Taken together, these data suggest that NO plays an inhibitory role in the control of ventilation in adult zebrafish, but an excitatory role in larvae.

A role for nitric oxide in the control of breathing in zebrafish (Danio rerio)

ZACCONE, Giacomo;LAURIANO, Eugenia;
2015-01-01

Abstract

Nitric oxide (NO) is a gaseous neurotransmitter, which, in adult mammals, modulates the acute hypoxic ventilatory response; its role in the control of breathing in fish during development is unknown. We addressed the interactive effects of developmental age and NO in the control of piscine breathing by measuring the ventilatory response of zebrafish (Danio rerio) adults and larvae to NO donors and by inhibiting endogenous production of NO. In adults, sodium nitroprusside (SNP), a NO donor, inhibited ventilation; the extent of the ventilatory inhibition was related to the pre-existing ventilatory drive, with the greatest inhibition exhibited during exposure to hypoxia (P-O2 = 5.6 kPa). Inhibition of endogenous NO production using L-NAME suppressed the hypoventilatory response to hyperoxia, supporting an inhibitory role of NO in adult zebrafish. Neuroepithelial cells (NECs), the putative oxygen chemoreceptors of fish, contain neuronal nitric oxide synthase (nNOS). In zebrafish larvae at 4 days post-fertilization, SNP increased ventilation in a concentration-dependent manner. Inhibition of NOS activity with L-NAME or knockdown of nNOS inhibited the hypoxic (P-O2 = 3.5 kPa) ventilatory response. Immunohistochemistry revealed the presence of nNOS in the NECs of larvae. Taken together, these data suggest that NO plays an inhibitory role in the control of ventilation in adult zebrafish, but an excitatory role in larvae.
2015
File in questo prodotto:
File Dimensione Formato  
2015 A role for nitric oxide.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3065683
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 46
social impact