The "dynamic" or "glass" transition in biomolecules is as important to their functioning as the folding process. This transition occurs in the low temperature regime and has been related to the onset of biochemical activity that is dependent on the hydration level. This protein transition is believed to be triggered by the strong hydrogen bond coupling in the hydration water. We study the vibrational bending mode and measure it using Fourier Transform Infrared spectroscopy. We demonstrate that at the molecular level the hydration water bending mode bonds the C=O and N-H peptide groups, and find that the temperature of the "dynamic" protein transition is the same as the fragile-to-strong dynamic transition in confined water. The fragile-to-strong dynamic transition in water governs the nature of the H bonds between water and peptides and appears to be universal in supercooled glass-forming liquids.

The influence of water on protein properties

MALLAMACE, Francesco;CORSARO, CARMELO;MALLAMACE, DOMENICO;VASI CIRINO, salvatore;
2014-01-01

Abstract

The "dynamic" or "glass" transition in biomolecules is as important to their functioning as the folding process. This transition occurs in the low temperature regime and has been related to the onset of biochemical activity that is dependent on the hydration level. This protein transition is believed to be triggered by the strong hydrogen bond coupling in the hydration water. We study the vibrational bending mode and measure it using Fourier Transform Infrared spectroscopy. We demonstrate that at the molecular level the hydration water bending mode bonds the C=O and N-H peptide groups, and find that the temperature of the "dynamic" protein transition is the same as the fragile-to-strong dynamic transition in confined water. The fragile-to-strong dynamic transition in water governs the nature of the H bonds between water and peptides and appears to be universal in supercooled glass-forming liquids.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3065829
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 38
social impact