In this paper, we consider a Cournot duopoly, in which any firm does not know the marginal costs of production of the other player, as a Bayesian game. In our game, the marginal costs depend on two infinite continuous sets of states of the world. We shall study, before the general case, an intermediate case in which only one player, the second one, shows infinitely many types. Then, we shall generalize to the case in which both players show infinitely many types depending on the marginal costs, where the marginal costs are given by the nature and each actual marginal cost is known only by the respective player. We find, in both cases, the general Nash equilibrium.
Cournot-Bayesian General Equilibrium: A Radon Measure Approach
Carfì, DavidPrimo
;Donato, Alessia
Ultimo
2018-01-01
Abstract
In this paper, we consider a Cournot duopoly, in which any firm does not know the marginal costs of production of the other player, as a Bayesian game. In our game, the marginal costs depend on two infinite continuous sets of states of the world. We shall study, before the general case, an intermediate case in which only one player, the second one, shows infinitely many types. Then, we shall generalize to the case in which both players show infinitely many types depending on the marginal costs, where the marginal costs are given by the nature and each actual marginal cost is known only by the respective player. We find, in both cases, the general Nash equilibrium.File | Dimensione | Formato | |
---|---|---|---|
2019 CaDo - mathematics 7(1).pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
249.41 kB
Formato
Adobe PDF
|
249.41 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.