The Internet of Things (IoT) facilitates creation of smart spaces by converting existing environments into sensor-rich data-centric cyber-physical systems with an increasing degree of automation, giving rise to Industry 4.0. When adopted in commercial/industrial contexts, this trend is revolutionising many aspects of our everyday life, including the way people access and receive healthcare services. As we move towards Healthcare Industry 4.0, the underlying IoT systems of Smart Healthcare spaces are growing in size and complexity, making it important to ensure that extreme amounts of collected data are properly processed to provide valuable insights and decisions according to requirements in place. This paper focuses on the Smart Healthcare domain and addresses the issue of data fusion in the context of IoT networks, consisting of edge devices, network and communications units, and Cloud platforms. We propose a distributed hierarchical data fusion architecture, in which different data sources are combined at each level of the IoT taxonomy to produce timely and accurate results. This way, mission-critical decisions, as demonstrated by the presented Smart Healthcare scenario, are taken with minimum time delay, as soon as necessary information is generated and collected. The proposed approach was implemented using the Complex Event Processing technology, which natively supports the hierarchical processing model and specifically focuses on handling streaming data 'on the fly'-a key requirement for storage-limited IoT devices and time-critical application domains. Initial experiments demonstrate that the proposed approach enables fine-grained decision taking at different data fusion levels and, as a result, improves the overall performance and reaction time of public healthcare services, thus promoting the adoption of the IoT technologies in Healthcare Industry 4.0.

Hierarchical data fusion for Smart Healthcare

Distefano, Salvatore
Secondo
;
2019-01-01

Abstract

The Internet of Things (IoT) facilitates creation of smart spaces by converting existing environments into sensor-rich data-centric cyber-physical systems with an increasing degree of automation, giving rise to Industry 4.0. When adopted in commercial/industrial contexts, this trend is revolutionising many aspects of our everyday life, including the way people access and receive healthcare services. As we move towards Healthcare Industry 4.0, the underlying IoT systems of Smart Healthcare spaces are growing in size and complexity, making it important to ensure that extreme amounts of collected data are properly processed to provide valuable insights and decisions according to requirements in place. This paper focuses on the Smart Healthcare domain and addresses the issue of data fusion in the context of IoT networks, consisting of edge devices, network and communications units, and Cloud platforms. We propose a distributed hierarchical data fusion architecture, in which different data sources are combined at each level of the IoT taxonomy to produce timely and accurate results. This way, mission-critical decisions, as demonstrated by the presented Smart Healthcare scenario, are taken with minimum time delay, as soon as necessary information is generated and collected. The proposed approach was implemented using the Complex Event Processing technology, which natively supports the hierarchical processing model and specifically focuses on handling streaming data 'on the fly'-a key requirement for storage-limited IoT devices and time-critical application domains. Initial experiments demonstrate that the proposed approach enables fine-grained decision taking at different data fusion levels and, as a result, improves the overall performance and reaction time of public healthcare services, thus promoting the adoption of the IoT technologies in Healthcare Industry 4.0.
2019
File in questo prodotto:
File Dimensione Formato  
3140599.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3140599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 58
social impact