Non-equilibrium plasma was obtained by irradiating Al foils in vacuum with a femtosecond (fs) laser at intensities of the order of 1018 W/cm2. Protons and other light ions were accelerated in the forward direction by using the target-normal-sheath acceleration regime. Time-of-flight technique was employed to measure the ions' kinetic energy using SiC detectors placed at known distances and angles. The ion acceleration was monitored under different conditions of laser focal position, laser pulse energy, and laser contrast. The target was irradiated using different thicknesses and anti-reflecting graphene films. By optimizing the laser parameters, irradiation conditions, and target properties, it was possible to accelerate up to 2.3 MeV per charge state, as will be presented and discussed.

Ion acceleration from aluminium plasma generated by a femtosecond laser in different conditions

Torrisi L.
Primo
;
Cutroneo M.
Penultimo
;
2020-01-01

Abstract

Non-equilibrium plasma was obtained by irradiating Al foils in vacuum with a femtosecond (fs) laser at intensities of the order of 1018 W/cm2. Protons and other light ions were accelerated in the forward direction by using the target-normal-sheath acceleration regime. Time-of-flight technique was employed to measure the ions' kinetic energy using SiC detectors placed at known distances and angles. The ion acceleration was monitored under different conditions of laser focal position, laser pulse energy, and laser contrast. The target was irradiated using different thicknesses and anti-reflecting graphene films. By optimizing the laser parameters, irradiation conditions, and target properties, it was possible to accelerate up to 2.3 MeV per charge state, as will be presented and discussed.
2020
File in questo prodotto:
File Dimensione Formato  
1.566-CTPP-Al.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3161694
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact