In recent years the development of novel approaches for the production of nano-formulations (nanocarriers) for efficient transport of drug molecules in living systems offers a wide range of biotechnology applications. However, despite the remarkable developments of recent synthetic methodologies, most of all nanocarrier's action is associated with a number of unwanted side effects that diminish their efficient use in nanomedicine. This highlights some critical issues in the design and engineering of nanocarrier systems for biotechnology applications, arising from the complex environment and multiform interactions established within the specific biological media. Many questions still remain open for what concerns the way to deal with the complexity of the biological processes involved. What is the minimal number of key parameters (and their related key factors) required to describe behavior of nanomaterials without sacrificing the complexity of the identified process? In other words, what is the “minimum level of complexity” to assume in the theoretical and experimental models that may satisfactorily describe the nanocarriers (and nanomaterials) interaction with biological systems. Herein, we analyze relevant open questions with the aim of offering possible perspectives for the development of next-generation nanomaterials that are able to overcome the critical issues during their action in complex biological media.
Enhancement of colloidal stability of drug nanocarriers in complex biological environment
Lombardo D.
Primo
;Caccamo M. T.Secondo
;Magazu S.;
2019-01-01
Abstract
In recent years the development of novel approaches for the production of nano-formulations (nanocarriers) for efficient transport of drug molecules in living systems offers a wide range of biotechnology applications. However, despite the remarkable developments of recent synthetic methodologies, most of all nanocarrier's action is associated with a number of unwanted side effects that diminish their efficient use in nanomedicine. This highlights some critical issues in the design and engineering of nanocarrier systems for biotechnology applications, arising from the complex environment and multiform interactions established within the specific biological media. Many questions still remain open for what concerns the way to deal with the complexity of the biological processes involved. What is the minimal number of key parameters (and their related key factors) required to describe behavior of nanomaterials without sacrificing the complexity of the identified process? In other words, what is the “minimum level of complexity” to assume in the theoretical and experimental models that may satisfactorily describe the nanocarriers (and nanomaterials) interaction with biological systems. Herein, we analyze relevant open questions with the aim of offering possible perspectives for the development of next-generation nanomaterials that are able to overcome the critical issues during their action in complex biological media.File | Dimensione | Formato | |
---|---|---|---|
1942-8142-1-PB_AAPP_A_25_LCMKC_19.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.