The suitability of graphene oxide (GO) foils as radiation sensitive materials for soft X-ray irradiation is investigated by means of X-ray photoelectron spectroscopy (XPS). In particular GO micrometric foils have been irradiated by soft X-rays at a 1486.6 eV energy at high flux (>1012 photons/cm2s) in ultra-high vacuum. The XPS analysis of the carbon-carbon (CC) and the carbon-oxygen links (CO) characterizes the composition of the first layers of the GO foils. The CC/CO ratio of the high-resolution C1s XPS spectrum is used as dosimetric index. The incident X-ray photons, proportionally to their fluence, partially reduce GO foils decreasing the amount of oxygen groups chemically bonded to carbon network. This decrease causes an increase on the CC/CO ratio that is correlated to the irradiation time, i.e. to the dose absorbed by the GO foil, showing a linear increment with the dose. Our preliminary investigations indicate that GO can be employed to realize a thin foil dosimeter giving a linear response to the absorbed dose in the (275.76 kGy ÷ 8.02 MGy) range. The absorbed dose can be also evaluated by measuring the C/O ratio from the C1s and O1s XPS spectra analysis or with different techniques, as discussed in the paper.
Graphene oxide as a radiation sensitive material for XPS dosimetry
Torrisi L.
Primo
;Silipigni L.Secondo
;Cutroneo M.Penultimo
;
2020-01-01
Abstract
The suitability of graphene oxide (GO) foils as radiation sensitive materials for soft X-ray irradiation is investigated by means of X-ray photoelectron spectroscopy (XPS). In particular GO micrometric foils have been irradiated by soft X-rays at a 1486.6 eV energy at high flux (>1012 photons/cm2s) in ultra-high vacuum. The XPS analysis of the carbon-carbon (CC) and the carbon-oxygen links (CO) characterizes the composition of the first layers of the GO foils. The CC/CO ratio of the high-resolution C1s XPS spectrum is used as dosimetric index. The incident X-ray photons, proportionally to their fluence, partially reduce GO foils decreasing the amount of oxygen groups chemically bonded to carbon network. This decrease causes an increase on the CC/CO ratio that is correlated to the irradiation time, i.e. to the dose absorbed by the GO foil, showing a linear increment with the dose. Our preliminary investigations indicate that GO can be employed to realize a thin foil dosimeter giving a linear response to the absorbed dose in the (275.76 kGy ÷ 8.02 MGy) range. The absorbed dose can be also evaluated by measuring the C/O ratio from the C1s and O1s XPS spectra analysis or with different techniques, as discussed in the paper.File | Dimensione | Formato | |
---|---|---|---|
3168509.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.