The diffusion process of water molecules within a polyetherimide (PEI) glassy matrix has been analyzed by combining the experimental analysis of water sorption kinetics performed by FTIR spectroscopy with theoretical information gathered from Molecular Dynamics simulations and with the expression of water chemical potential provided by a non‐equilibrium lattice fluid model able to describe the thermodynamics of glassy polymers. This approach allowed us to construct a convincing description of the diffusion mechanism of water in PEI providing molecular details of the process related to the effects of the cross‐ and self‐hydrogen bonding established in the system on the dynamics of water mass transport.
A molecular interpretation of the dynamics of diffusive mass transport of water within a glassy polyetherimide
Mallamace D.;Mallamace F.;Mensitieri G.
2021-01-01
Abstract
The diffusion process of water molecules within a polyetherimide (PEI) glassy matrix has been analyzed by combining the experimental analysis of water sorption kinetics performed by FTIR spectroscopy with theoretical information gathered from Molecular Dynamics simulations and with the expression of water chemical potential provided by a non‐equilibrium lattice fluid model able to describe the thermodynamics of glassy polymers. This approach allowed us to construct a convincing description of the diffusion mechanism of water in PEI providing molecular details of the process related to the effects of the cross‐ and self‐hydrogen bonding established in the system on the dynamics of water mass transport.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.