The INFN-CIMA project deals with the employment of graphene, graphene oxide (GO) and reduced graphene oxide (rGO) for applications in Nuclear Physics. In particular, the project aim is that to use the special properties of GO, which can be synthesized as a thin foil with 0.1–100 µm thickness, to realize thin films for solid ion strippers employed in ion accelerator sources with lifetime advantages with respect to the traditional graphite foils. rGO thin foils can be employment to develop laser-generated plasma and to accelerate protons and carbon ions in target-normal-sheath-acceleration (TNSA) regime. The GO can be also employed for the realization of special sensors of temperature, air relative humidity and gas. Moreover, it can be used to realize water-equivalent, biocompatible and low dimensional, dosimeters based on the lecture of the reduction level produced by the absorbed dose. Finally, graphene and rGO films can be applied to investigate the implemantation ofsmall radiation detectors. Many applications and experimental results will be presented and discussed.

Carbon-based innovative materials for nuclear physics applications (CIMA), INFN project

Torrisi L.
;
Silipigni L.;Cutroneo M.;
2021

Abstract

The INFN-CIMA project deals with the employment of graphene, graphene oxide (GO) and reduced graphene oxide (rGO) for applications in Nuclear Physics. In particular, the project aim is that to use the special properties of GO, which can be synthesized as a thin foil with 0.1–100 µm thickness, to realize thin films for solid ion strippers employed in ion accelerator sources with lifetime advantages with respect to the traditional graphite foils. rGO thin foils can be employment to develop laser-generated plasma and to accelerate protons and carbon ions in target-normal-sheath-acceleration (TNSA) regime. The GO can be also employed for the realization of special sensors of temperature, air relative humidity and gas. Moreover, it can be used to realize water-equivalent, biocompatible and low dimensional, dosimeters based on the lecture of the reduction level produced by the absorbed dose. Finally, graphene and rGO films can be applied to investigate the implemantation ofsmall radiation detectors. Many applications and experimental results will be presented and discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3203747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact