A compressible capacitive mechanical pressure sensor has been developed. Porous polydimethylsiloxane (p-PDMS) has been chosen as dielectric insulator because of its dielectric constant value. Gold nanoparticles have been embedded in p-PDMS to change the dielectric properties and to tune its elasticity. p-PDMS and its nanocomposite have been synthesized using the sugar leaching process. The p-PDMS physical characterization, with and without the gold nanoparticles, has been conducted to investigate its elastic response to compressive stresses as a function of both the polymer preparation thermal treatment and the gold nanoparticle concentration. A sensor operating in a low-pressure range between about 100 Pa and 10 kPa with a strain ranging between about 5% and 95% has been realized. Dielectric constant and electrical resistivity measurements have been performed using samples with a starting volume of the order of 1 cm3. The relationship between the dielectric constant, the electrical resistivity and the compressive stress/strain has been also deduced. The described sensor is flexible, biocompatible, water equivalent and can have applications in biomedicine (orthopedic, dentistry), engineering (stress–strain measurements, robotics), and microelectronics (microbalances, stress test on electronic devices).

Pressure sensor based on porous polydimethylsiloxane with embedded gold nanoparticles

Silipigni L.
Primo
;
Cutroneo M.;Torrisi L.
Ultimo
2021-01-01

Abstract

A compressible capacitive mechanical pressure sensor has been developed. Porous polydimethylsiloxane (p-PDMS) has been chosen as dielectric insulator because of its dielectric constant value. Gold nanoparticles have been embedded in p-PDMS to change the dielectric properties and to tune its elasticity. p-PDMS and its nanocomposite have been synthesized using the sugar leaching process. The p-PDMS physical characterization, with and without the gold nanoparticles, has been conducted to investigate its elastic response to compressive stresses as a function of both the polymer preparation thermal treatment and the gold nanoparticle concentration. A sensor operating in a low-pressure range between about 100 Pa and 10 kPa with a strain ranging between about 5% and 95% has been realized. Dielectric constant and electrical resistivity measurements have been performed using samples with a starting volume of the order of 1 cm3. The relationship between the dielectric constant, the electrical resistivity and the compressive stress/strain has been also deduced. The described sensor is flexible, biocompatible, water equivalent and can have applications in biomedicine (orthopedic, dentistry), engineering (stress–strain measurements, robotics), and microelectronics (microbalances, stress test on electronic devices).
2021
File in questo prodotto:
File Dimensione Formato  
online_Pressure_sensor_based_on_porous_polydimethylsiloxa-1.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3211255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact