NMR spectroscopy is used in the temperature range 180–350 K to study the local order and transport properties of pure liquid water (bulk and confined) and its solutions with glycerol and methanol at different molar fractions. We focused our interest on the hydrophobic effects (HE), i.e., the competition between hydrophilic and hydrophobic interactions. Nowadays, compared to hydrophilicity, little is known about hydrophobicity. Therefore, the main purpose of this study is to gain new information about hydrophobicity. As the liquid water properties are dominated by polymorphism (two coexisting liquid phases of high and low density) due to hydrogen bond interactions (HB), creating (especially in the supercooled regime) the tetrahedral networking, we focused our interest to the HE of these structures. We measured the relaxation times (T1 and T2 ) and the self-diffusion (DS ). From these times, we took advantage of the NMR property to follow the behaviors of each molecular component (the hydrophilic and hydrophobic groups) separately. In contrast, DS is studied in terms of the Adam–Gibbs model by obtaining the configurational entropy (Sconf ) and the specific heat contributions (CP,conf ). We find that, for the HE, all of the studied quantities behave differently. For water–glycerol, the HB interaction is dominant for all conditions; water–methanol, two different T-regions above and below 265 K are observable, dominated by hydrophobicity and hydrophilicity, respectively. Below this temperature, where the LDL phase and the HB network develops and grows, with the times and CP,conf change behaviors leading to maxima and minima. Above it, the HB becomes weak and less stable, the HDL dominates, and hydrophobicity determines the solution.
Hydrophilic and hydrophobic effects on the structure and themodynamic properties of confined water: Water in solutions
Mallamace F.
Primo
;Mallamace D.Secondo
;Lanzafame P.Penultimo
;Papanikolaou G.Ultimo
;MALLAMACE, DOMENICO
2021-01-01
Abstract
NMR spectroscopy is used in the temperature range 180–350 K to study the local order and transport properties of pure liquid water (bulk and confined) and its solutions with glycerol and methanol at different molar fractions. We focused our interest on the hydrophobic effects (HE), i.e., the competition between hydrophilic and hydrophobic interactions. Nowadays, compared to hydrophilicity, little is known about hydrophobicity. Therefore, the main purpose of this study is to gain new information about hydrophobicity. As the liquid water properties are dominated by polymorphism (two coexisting liquid phases of high and low density) due to hydrogen bond interactions (HB), creating (especially in the supercooled regime) the tetrahedral networking, we focused our interest to the HE of these structures. We measured the relaxation times (T1 and T2 ) and the self-diffusion (DS ). From these times, we took advantage of the NMR property to follow the behaviors of each molecular component (the hydrophilic and hydrophobic groups) separately. In contrast, DS is studied in terms of the Adam–Gibbs model by obtaining the configurational entropy (Sconf ) and the specific heat contributions (CP,conf ). We find that, for the HE, all of the studied quantities behave differently. For water–glycerol, the HB interaction is dominant for all conditions; water–methanol, two different T-regions above and below 265 K are observable, dominated by hydrophobicity and hydrophilicity, respectively. Below this temperature, where the LDL phase and the HB network develops and grows, with the times and CP,conf change behaviors leading to maxima and minima. Above it, the HB becomes weak and less stable, the HDL dominates, and hydrophobicity determines the solution.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.