Glycyrrhiza glabra roots have been well studied for their pharmacological activities, whereas less research has been conducted on liquorice aerial parts. Leaves represent a good source of D-pinitol, useful in the treatment of insulin resistance-related pathologies. Herein, we analyzed the in vitro effects of a D-pinitol-rich methanolic extract from Glycyrrhiza glabra leaves (GGLME) against lipotoxicity-related hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes exposed to palmitic acid (PA), comparing its activity with D-pinitol. GGLME pretreatment decreased lipid deposition, PPAR-γ, and NF-κB pathway induced by PA, similarly to D-pinitol, and improved insulin sensitivity, in presence or not of PA, increasing PI3K, pAkt, and GLUT1 levels. This study confirms that liquorice leaves, considered a waste of resource, could potentially be reused, and support further in vivo studies on animal and human models. In conclusion, liquorice leaves extract represents a potential candidate for prevention of metabolically induced inflammation, frequently leading to metabolic disorders.

Effects of a pinitol-rich Glycyrrhiza glabra L. leaf extract on insulin and inflammatory signaling pathways in palmitate-induced hypertrophic adipocytes

Maria Sofia Molonia
Primo
;
Cristina Occhiuto
Secondo
;
Claudia Muscarà;Antonio Speciale
;
Mariateresa Cristani;Antonella Saija
Penultimo
;
Francesco Cimino
Ultimo
2022-01-01

Abstract

Glycyrrhiza glabra roots have been well studied for their pharmacological activities, whereas less research has been conducted on liquorice aerial parts. Leaves represent a good source of D-pinitol, useful in the treatment of insulin resistance-related pathologies. Herein, we analyzed the in vitro effects of a D-pinitol-rich methanolic extract from Glycyrrhiza glabra leaves (GGLME) against lipotoxicity-related hypertrophy, inflammation, and insulin resistance in 3T3-L1 adipocytes exposed to palmitic acid (PA), comparing its activity with D-pinitol. GGLME pretreatment decreased lipid deposition, PPAR-γ, and NF-κB pathway induced by PA, similarly to D-pinitol, and improved insulin sensitivity, in presence or not of PA, increasing PI3K, pAkt, and GLUT1 levels. This study confirms that liquorice leaves, considered a waste of resource, could potentially be reused, and support further in vivo studies on animal and human models. In conclusion, liquorice leaves extract represents a potential candidate for prevention of metabolically induced inflammation, frequently leading to metabolic disorders.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3215686
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact