Three bacterial species related to the genus Thalassospira (T. lucentensis, T. xianhensis and T. profundimaris), isolated from polluted sediment and seawater samples collected from Priolo Bay (eastern coast of Sicily, Ionian Sea), were analyzed for their biotechnological potential. For this purpose, the presence of specific catabolic genes associated to aliphatic and aromatic hydrocarbon metabolism, the production of biosurfactants and emulsification activity, the capability to degrade oil-derived linear, branched, cyclic alkanes, and polycyclic aromatic hydrocarbons (PAHs) were evaluated. Alkane hydroxylase gene (alkano-monoxygenase alkb and citocrome P450) were present in genome of all strains, confirming their hydrocarbons degrading capability. All strains of Thalassospira produced biosurfactants and showed emulsification activity. The two-dimensional gas chromatography analysis (GC×GC) showed that they were able to degrade oil fractions with the capacity ranging between 77% and 91%. The data obtained in this study demonstrated the biodegradation ability of Thalassospira and suggest that these strains play an important role in marine contaminated ecosystems.

Biodegradation Potential of Oil-degrading Bacteria Related to the Genus Thalassospira Isolated from Polluted Coastal Area in Mediterranean Sea

Santisi S.;Zoccali M.;Mondello L.;Cappello S.
2022-01-01

Abstract

Three bacterial species related to the genus Thalassospira (T. lucentensis, T. xianhensis and T. profundimaris), isolated from polluted sediment and seawater samples collected from Priolo Bay (eastern coast of Sicily, Ionian Sea), were analyzed for their biotechnological potential. For this purpose, the presence of specific catabolic genes associated to aliphatic and aromatic hydrocarbon metabolism, the production of biosurfactants and emulsification activity, the capability to degrade oil-derived linear, branched, cyclic alkanes, and polycyclic aromatic hydrocarbons (PAHs) were evaluated. Alkane hydroxylase gene (alkano-monoxygenase alkb and citocrome P450) were present in genome of all strains, confirming their hydrocarbons degrading capability. All strains of Thalassospira produced biosurfactants and showed emulsification activity. The two-dimensional gas chromatography analysis (GC×GC) showed that they were able to degrade oil fractions with the capacity ranging between 77% and 91%. The data obtained in this study demonstrated the biodegradation ability of Thalassospira and suggest that these strains play an important role in marine contaminated ecosystems.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3229067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact