Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However, despite their outstanding mechanical and biological properties, implant failure mainly due to post operative infection still remains a significant concern. The possibility to develop inherent antibacterial medical devices was here investigated by covalently inserting bioactive ammonium salts onto the surface of titanium metal substrates. Titanium discs have been functionalized with quaternary ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this study highlight the importance of chemical functionalization in addressing the antimicrobial activity of metal surfaces and could open new perspectives in the development of inherent antibacterial medical devices.

Titanium Surface Modification for Implantable Medical Devices with Anti-Bacterial Adhesion Properties

Consuelo Celesti
Primo
;
Teresa Gervasi
Secondo
;
Nicola Cicero;Salvatore Vincenzo Giofre;Claudia Espro;Elpida Piperopoulos;Giovanna Lo Vecchio
Penultimo
;
Daniela Iannazzo
Ultimo
2022-01-01

Abstract

Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However, despite their outstanding mechanical and biological properties, implant failure mainly due to post operative infection still remains a significant concern. The possibility to develop inherent antibacterial medical devices was here investigated by covalently inserting bioactive ammonium salts onto the surface of titanium metal substrates. Titanium discs have been functionalized with quaternary ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this study highlight the importance of chemical functionalization in addressing the antimicrobial activity of metal surfaces and could open new perspectives in the development of inherent antibacterial medical devices.
2022
File in questo prodotto:
File Dimensione Formato  
materials 2022(15)3283.pdf

accesso aperto

Descrizione: Materials, 2022, 15, 3283
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.69 MB
Formato Adobe PDF
4.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3230072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact