Under natural viewing conditions, the physiological instability of visual fixation keeps the projection of the stimulus on the retina in constant motion. After eye opening, chronic exposure to a constantly moving retinal image might influence the experience-dependent refinement of cell response characteristics. The results of previous modeling studies have suggested a contribution of fixational instability to the Hebbian maturation of the receptive fields of VI simple cells (Rucci, Edelman, & Wray, 2000; Rucci & Casile, 2004). This letter examines the origins of such a contribution. Using quasilinear models of lateral geniculate nucleus units and V1 simple cells, we derive analytical expressions for the second-order statistics of thalamocortical activity before and after eye opening. We show that in the presence of natural stimulation, fixational instability introduces a spatially uncorrelated signal in the retinal input, which strongly influences the structure of correlated activity in the model. This input signal produces a regime of thalamocortical activity similar to that present before eye opening and compatible with the Hebbian maturation of cortical receptive fields.

A theoretical analysis of the influence of fixational instability on the development of thalamocortical connectivity

Casile, Antonino
;
2006-01-01

Abstract

Under natural viewing conditions, the physiological instability of visual fixation keeps the projection of the stimulus on the retina in constant motion. After eye opening, chronic exposure to a constantly moving retinal image might influence the experience-dependent refinement of cell response characteristics. The results of previous modeling studies have suggested a contribution of fixational instability to the Hebbian maturation of the receptive fields of VI simple cells (Rucci, Edelman, & Wray, 2000; Rucci & Casile, 2004). This letter examines the origins of such a contribution. Using quasilinear models of lateral geniculate nucleus units and V1 simple cells, we derive analytical expressions for the second-order statistics of thalamocortical activity before and after eye opening. We show that in the presence of natural stimulation, fixational instability introduces a spatially uncorrelated signal in the retinal input, which strongly influences the structure of correlated activity in the model. This input signal produces a regime of thalamocortical activity similar to that present before eye opening and compatible with the Hebbian maturation of cortical receptive fields.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11570/3251511
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact